Расстояние между серединами перпендикуляра и наклонной равно 2√3 м.
Объяснение:
Дано: плоскости α║β, АВ ⊥ α, АВ ⊥ β, АВ = 3м, СD = 5м.
АС = 4м, BD = 4м. AF=EB, CF=FD.
Найти EF.
Проведем перпендикуляры СС1 и FF1 к плоскости β.
Четырехугольники АСС1В и EFF1B - прямоугольники и
C1B = FC = 4м, EF = BF1 (противоположные стороны прямоугольников.
Треугольник С1BD - равнобедренный с основанием С1D.
С1F1 = F1D, так как FF1 - средняя линия треугольника СС1D.
BF1 - медиана и высота этого треугольника.
В прямоугольном треугольнике CC1D по Пифагору:
C1D = √(CD²-CC1²) = √(5²-3²) = 4м. F1D = 2м.
В треугольнике С1BD по Пифагору
BF1 = √(BD²-F1D²) = √(4²-2²) = 2√3м.
EF = BF1 = 2√3 м.
Расстояние между серединами перпендикуляра и наклонной равно 2√3 м.
Объяснение:
Дано: плоскости α║β, АВ ⊥ α, АВ ⊥ β, АВ = 3м, СD = 5м.
АС = 4м, BD = 4м. AF=EB, CF=FD.
Найти EF.
Проведем перпендикуляры СС1 и FF1 к плоскости β.
Четырехугольники АСС1В и EFF1B - прямоугольники и
C1B = FC = 4м, EF = BF1 (противоположные стороны прямоугольников.
Треугольник С1BD - равнобедренный с основанием С1D.
С1F1 = F1D, так как FF1 - средняя линия треугольника СС1D.
BF1 - медиана и высота этого треугольника.
В прямоугольном треугольнике CC1D по Пифагору:
C1D = √(CD²-CC1²) = √(5²-3²) = 4м. F1D = 2м.
В треугольнике С1BD по Пифагору
BF1 = √(BD²-F1D²) = √(4²-2²) = 2√3м.
EF = BF1 = 2√3 м.