Между сторонами прямого угла проходят два произвольных луча, которые разбивают его на три части. Найдите угол между лучами, если угол между биссектрисами крайних углов равен 60 градусов
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Обозначим сторону квадрата 2x. Треугольник АВЕ - равнобедренный. Высота из вершины Е на сторону АВ делит АВ пополам. Точка Е равноудалена от точек А и В и лежит на серединном перпендикуляре к АВ, АВ || СD Поэтому точка Е равноудалена от точек С и D. СЕ=√13.
Обозначим высоту треугольника АВЕ у, тогда высота равнобедренного треугольника СDE будет равна (2x-y) По теореме Пифагора х²+у²=25 х²+(2х-у)²=13
В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения)
В данном случае диагонали равны 30, 40 и 70 см.
По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон.
Здесь имеем "треугольник" и три длины, и 70=30+40.
Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней.
Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Треугольник АВЕ - равнобедренный. Высота из вершины Е на сторону АВ делит АВ пополам.
Точка Е равноудалена от точек А и В и лежит на серединном перпендикуляре к АВ, АВ || СD
Поэтому точка Е равноудалена от точек С и D.
СЕ=√13.
Обозначим высоту треугольника АВЕ у, тогда высота равнобедренного треугольника СDE будет равна (2x-y)
По теореме Пифагора
х²+у²=25
х²+(2х-у)²=13
4х²-4ху+12=0
ху-х²=3
х(у-х)=3
х=3 у=4
Сторона квадрата
2х=2·3=6
2х-у=2
Проверка
3²+4²=25
2²+3²=13
ответ 6 м