1757 жылдан Глазгодағы университетте механик болып жұмыс істеді. Онда ол Д.Папен (1647 – 1714) қазанын пайдаланып қаныққан бу температурасының қысымға тәуелділігін зерттеді. 1763 – 64 жылы Т.Ньюкоменнің (1663 – 1729) бу машинасының моделін кемелдендіре отырып, бу шығынын конденсаторды цилиндрден оқшаулау арқылы азайтуға болатындығын дәлелдеді. Осы идеяны басшылыққа ала отырып 1765 жылы тәжірибелік, ал 1768 жылы ең алғашқы бу машинасын құрастырды. Бұл бу машинасы Ньюкоменнің машиналарына қарағанда едәуір тиімді болды.
Точки M, N и К являются точками пересечения медиан боковых граней тетраэдра. Найдите площадь треугольника MNK, если площадь основания тетраэдра равна 36 см².
DE, DF и DG - медианы. Значит EF, EG и FG - средние линии треугольника АВС и равны половинам соответственных сторон треугольника АВС. => треугольник EFG подобен треугольнику АВС с коэффициентом подобия k = 1/2. Площади подобных треугольников относятся как квадрат коэффициента их подобия =>
Sefg/Sabc =1/4. Sefg = (1/4)Sabc = 9cм².
Треугольники DEF и DMN, DFG и DNK, DEG и DMK подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны", так как DM/DE = DN/DF = DK/DG = 2/3 (свойство точки пересечения медиан, которая делит медианы в отношении 2:1, считая от вершины).
Следовательно, k = 2/3. =>
MN/EF = NK/FG = MK/EG = 2/3. =>
Треугольники MNK и EFG подобны по признаку : "Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны" с коэффициентом
Відповідь:
1757 жылдан Глазгодағы университетте механик болып жұмыс істеді. Онда ол Д.Папен (1647 – 1714) қазанын пайдаланып қаныққан бу температурасының қысымға тәуелділігін зерттеді. 1763 – 64 жылы Т.Ньюкоменнің (1663 – 1729) бу машинасының моделін кемелдендіре отырып, бу шығынын конденсаторды цилиндрден оқшаулау арқылы азайтуға болатындығын дәлелдеді. Осы идеяны басшылыққа ала отырып 1765 жылы тәжірибелік, ал 1768 жылы ең алғашқы бу машинасын құрастырды. Бұл бу машинасы Ньюкоменнің машиналарына қарағанда едәуір тиімді болды.
Пояснення:
Smnk = 4 см².
Объяснение:
Точки M, N и К являются точками пересечения медиан боковых граней тетраэдра. Найдите площадь треугольника MNK, если площадь основания тетраэдра равна 36 см².
DE, DF и DG - медианы. Значит EF, EG и FG - средние линии треугольника АВС и равны половинам соответственных сторон треугольника АВС. => треугольник EFG подобен треугольнику АВС с коэффициентом подобия k = 1/2. Площади подобных треугольников относятся как квадрат коэффициента их подобия =>
Sefg/Sabc =1/4. Sefg = (1/4)Sabc = 9cм².
Треугольники DEF и DMN, DFG и DNK, DEG и DMK подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны", так как DM/DE = DN/DF = DK/DG = 2/3 (свойство точки пересечения медиан, которая делит медианы в отношении 2:1, считая от вершины).
Следовательно, k = 2/3. =>
MN/EF = NK/FG = MK/EG = 2/3. =>
Треугольники MNK и EFG подобны по признаку : "Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны" с коэффициентом
k1 = 2/3. =>
Smnk = (k1)²·Sefg = (4/9)·9 = 4 cм².