1) Сумма углов в треугольнике равна 180°. Отсюда сумма острых углов в прямоугольном треугольнике равна 90. Обозначим меньший угол за х, тогда больший угол равен 8х. Составим уравнение: х+8х=90. х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2. Прямой угол биссектрисой делится на 2 угла по 45°. Сумма углов в полученном треугольнике: 45+132+х/2=180 х/2=3 х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30° Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90° В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45° Из этого следует равенство по двум углам и стороне между ними
Составим уравнение: х+8х=90.
х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2.
Прямой угол биссектрисой делится на 2 угла по 45°.
Сумма углов в полученном треугольнике: 45+132+х/2=180
х/2=3
х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30°
Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90°
В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45°
Из этого следует равенство по двум углам и стороне между ними
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral