1) Находим углы по теореме косинусов и площадь по теореме Герона: a b c p 2p S 4 8 5 8.5 17 8.18153 cos A= (АВ²+АС²-ВС²) / (2*АВ*АС) cos A = 0.9125 cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) cos B = -0.575 cos C= (АC²+ВС²-АD²) / (2*АC*ВС) cos С = 0.859375 Аrad = 0.421442 Brad = 2.1834 Сrad = 0.53675 Аgr = 24.14685 Bgr = 125.0996 Сgr = 30.75352.
2) Длины высот: АА₂ = 2S / BС = 4.090767 BB₂ = 2S / АС = 2.04538 CC₂ = 2S / ВА = 3.272614.
3) Длины медиан: Медиана, соединяющая вершину треугольника А с серединой стороны а равна a b c 4 8 5 ма мв мс 6.364 2.12132 5.80948
4) Длины биссектрис: Биссектриса угла А выражается:
a b c 4 8 5 βa βb βc 6.0177 2.04879 5.14242.
Деление сторон биссектрисами: a b c ВК КС АЕ ЕС АМ МВ 1.53847 2.46154 4.4444 3.5556 3.333 1.6667. Деление биссктрис точкой пересечения βa βb βc АО ОК ВО ОЕ СО ОМ 4.601799 1.41593 1.08465 0.96413 3.62994 1.512475 Отношение отрезков биссектрис от точки пересечения: АО/ОК ВО/ОЕ СО/ОМ 3.25 1.125 2.4
5) Радиус вписанной в треугольник окружности равен:
r = 0.9625334.
Расстояние от угла до точки касания окружности: АК=АМ BК=BЕ CМ=CЕ 4.5 0.5 3.5
Пусть первый катет-х, второй-у, c-гипотенуза по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов) с²=у²+х² система х-у=14 26²=у²+х² из первого уравнения выразим х х=14+у подставим во второе 26²=у²+(14+у)² 676=у²+14²+2*14*у+у² 676=2у²+196+28у 676-2у²-196-28у=0 480-2у²-28у=0 (делим все на (-2)) у²+14у-240=0- это приведенное уравнение по т.виета y₁+y₂=-14 y₁*y₂=-240 y₁=-24 (не подходит, <0) y₂=10 cm подставим то, что у нас получилось в подстановку х=14+10 х=24 cm площадь (произведение катетов деленное на 2) S=xy/2 S=24*10/2 S=120 cm²
a b c p 2p S
4 8 5 8.5 17 8.18153
cos A= (АВ²+АС²-ВС²) / (2*АВ*АС)
cos A = 0.9125
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС)
cos B = -0.575
cos C= (АC²+ВС²-АD²) / (2*АC*ВС)
cos С = 0.859375
Аrad = 0.421442 Brad = 2.1834 Сrad = 0.53675
Аgr = 24.14685 Bgr = 125.0996 Сgr = 30.75352.
2) Длины высот:
АА₂ = 2S / BС = 4.090767
BB₂ = 2S / АС = 2.04538
CC₂ = 2S / ВА = 3.272614.
3) Длины медиан:
Медиана, соединяющая вершину треугольника А с серединой стороны а равна
a b c
4 8 5
ма мв мс
6.364 2.12132 5.80948
4) Длины биссектрис:
Биссектриса угла А выражается:
a b c
4 8 5
βa βb βc
6.0177 2.04879 5.14242.
Деление сторон биссектрисами:
a b c
ВК КС АЕ ЕС АМ МВ
1.53847 2.46154 4.4444 3.5556 3.333 1.6667.
Деление биссктрис точкой пересечения
βa βb βc
АО ОК ВО ОЕ СО ОМ
4.601799 1.41593 1.08465 0.96413 3.62994 1.512475
Отношение отрезков биссектрис от точки пересечения:
АО/ОК ВО/ОЕ СО/ОМ
3.25 1.125 2.4
5) Радиус вписанной в треугольник окружности равен:
r = 0.9625334.
Расстояние от угла до точки касания окружности:
АК=АМ BК=BЕ CМ=CЕ
4.5 0.5 3.5
6) Радиус описанной окружности треугольника, (R):
R = 4.889058651.
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28у=0
480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
y₁*y₂=-240
y₁=-24 (не подходит, <0)
y₂=10 cm
подставим то, что у нас получилось в подстановку
х=14+10
х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²