Пусть внешний угол треугольника А = внешнему углу треугольника С и = 120°, тогда найдём внутренние углы треугольника. Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним. По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60° так же и внешний угол С - угол С треуг ABC= 180-120=60° А т.к. сумма углов треугольника = 180°, то 180-(60+60) = 180-120=60° - угол B А если все углы треугольника равны, то треугольник равносторонний. ЧТД )))
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60°
так же и внешний угол С - угол С треуг ABC= 180-120=60°
А т.к. сумма углов треугольника = 180°, то
180-(60+60) = 180-120=60° - угол B
А если все углы треугольника равны, то треугольник равносторонний. ЧТД )))