Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
1) 180° - (48° + 48°) = 84°
В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90°
В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95°
В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный.
ответ: А - 2; Б - 1; В - 3