МНЕ ЭТО НАДО Признаки равенства треугольников (3-й признак) Максат разрезал четырехугольник с равными сторонами так, как показано на рисунке. Длина разреза от точки D до точки C равна длине разреза от точки Cдо точки B. При транспортира он измерил только те углы, которые указаны на рисунке, и смог найти градусную меру угла BAC и сумму углов GFH и EFH. Чему равна сумма углов GFH и EFH? Чему равен угол BAC? ответ: ∠GFH + ∠EFH = ° ∠BAC = МНЕ ЭТО НАДО
Для вычисления величины любого из углов произвольного треугольника используйте теорему косинусов. Она гласит, что квадрат длины любой стороны (например, A) равен сумме квадратов длин двух других сторон (B и C), из которой вычтено произведение их же длин на косинус угла (α), лежащего в образуемой ими вершине. Это значит, что вы можете выразить косинус через длины сторон: cos(α) = (B²+C²-A²)/(2*A*B). Чтобы получить величину этого угла в градусах, к полученному выражению примените обратную косинусу функцию - арккосинус: α = arccos((B²+C²-A²)/(2*A*B)). Таким вы вычислите величину одного из углов - в данном случае того, который лежит напротив стороны А.
2
Для вычисления двух оставшихся углов можно использовать ту же формулу, меняя в ней местами длины известных сторон. Но более простое выражение с меньшим числом математических операций можно получить, задействовав другой постулат из области тригонометрии - теорему синусов. Она утверждает, что отношение длины любой стороны к синусу противолежащего ей угла в треугольнике равны. Это значит, что вы можете выразить, например, синус угла β, лежащего напротив стороны B через длину стороны C и уже рассчитанного угла α. Умножьте длину B на синус α, а результат разделите на длину C: sin(β) = B*sin(α)/C. Величину этого угла в градусах, как и в предыдущем шаге, рассчитайте с использованием обратной тригонометрической функции - на этот раз арксинуса: β = arcsin(B*sin(α)/C).
3
Величину оставшегося угла (γ) можно вычислить по любой из полученных в предыдущих шагах формул, поменяв в них местами длины сторон. Но проще задействовать еще одну теорему - о сумме углов в треугольнике. Она утверждает, что эта сумма всегда равна 180°. Так как два из трех углов вам уже известны, просто отнимите от 180° их величины, чтобы получить величину третьего: γ = 180°-α-β.
Т.к внешний угол 150, он образует с одним из внутренних углов треугольника смежный угол, значит 180-150=30 градусов (угол при основании АС). Тогда как треугольник равнобедренный, следовательно и второй угол при основании АС тоже 30 градусов. Опустим высоту из вершины В, например ВH. Получаем прямоугольные треугольники ВСH и равный ему треугольник BAH. В этих треугольниках один угол 30 градусов, а гипотенуза 6, а против угла в 30 градусов лежит катет равный половине гипотенузы и этот катет 3. Найдем по теореме Пифагора отрезок НС^2=36-9=27, НС=3 корень из 3. Тогда вся АС=6 корень из 3
Для вычисления величины любого из углов произвольного треугольника используйте теорему косинусов. Она гласит, что квадрат длины любой стороны (например, A) равен сумме квадратов длин двух других сторон (B и C), из которой вычтено произведение их же длин на косинус угла (α), лежащего в образуемой ими вершине. Это значит, что вы можете выразить косинус через длины сторон: cos(α) = (B²+C²-A²)/(2*A*B). Чтобы получить величину этого угла в градусах, к полученному выражению примените обратную косинусу функцию - арккосинус: α = arccos((B²+C²-A²)/(2*A*B)). Таким вы вычислите величину одного из углов - в данном случае того, который лежит напротив стороны А.
2
Для вычисления двух оставшихся углов можно использовать ту же формулу, меняя в ней местами длины известных сторон. Но более простое выражение с меньшим числом математических операций можно получить, задействовав другой постулат из области тригонометрии - теорему синусов. Она утверждает, что отношение длины любой стороны к синусу противолежащего ей угла в треугольнике равны. Это значит, что вы можете выразить, например, синус угла β, лежащего напротив стороны B через длину стороны C и уже рассчитанного угла α. Умножьте длину B на синус α, а результат разделите на длину C: sin(β) = B*sin(α)/C. Величину этого угла в градусах, как и в предыдущем шаге, рассчитайте с использованием обратной тригонометрической функции - на этот раз арксинуса: β = arcsin(B*sin(α)/C).
3
Величину оставшегося угла (γ) можно вычислить по любой из полученных в предыдущих шагах формул, поменяв в них местами длины сторон. Но проще задействовать еще одну теорему - о сумме углов в треугольнике. Она утверждает, что эта сумма всегда равна 180°. Так как два из трех углов вам уже известны, просто отнимите от 180° их величины, чтобы получить величину третьего: γ = 180°-α-β.
То есть углы будут равны
30
94
56
Т.к внешний угол 150, он образует с одним из внутренних углов треугольника смежный угол, значит 180-150=30 градусов (угол при основании АС). Тогда как треугольник равнобедренный, следовательно и второй угол при основании АС тоже 30 градусов. Опустим высоту из вершины В, например ВH. Получаем прямоугольные треугольники ВСH и равный ему треугольник BAH. В этих треугольниках один угол 30 градусов, а гипотенуза 6, а против угла в 30 градусов лежит катет равный половине гипотенузы и этот катет 3. Найдем по теореме Пифагора отрезок НС^2=36-9=27, НС=3 корень из 3. Тогда вся АС=6 корень из 3