1)Т.к. АВ=ВМ (по условию), то треугольник АВМ - равнобедренный. Следовательно угол ВАМ = углу BMA 2) Т.к. ABCD - парал-м, то АВ//СD и ВС//AD 3) Угол ВМА = углу CAD - как накрест лежащие углы при параллельных прямых ВС И АD и секущей АМ 4) угол ВАМ = углу ВМА = углу САD. Отсюда угол ВАМ = углу СAD. Следовательно АМ - бис-са угла BAD. ч.т.д.
АВ = ВМ, по условию, значит треугольник АВМ - равнобедренный. По свойству равнобедренного треугольника угол ВАМ = углу ВМА.
По свойству параллелограмма ВС параллельно АD, АС - секущая, значит угол АМВ = углу МАD, из вышесказанного следует, что угол ВАМ = углу МАD, значит АМ - биссектрисса
б) Решение:
АВ = СD по свойству параллелограмма,а АВ = ВМ из доказательства. Значит АВ = ВМ = СD = 8 см
МС = 4 по условию. ВС = ВМ + МС = 8 + 4 = 12. По свойству параллелограмма ВС = АD = 12
теперь можем найти площадь: Р = АВ + ВС + СD + DА = 8 + 12 + 8 + 12 = 40 см
1)Т.к. АВ=ВМ (по условию), то треугольник АВМ - равнобедренный. Следовательно угол ВАМ = углу BMA 2) Т.к. ABCD - парал-м, то АВ//СD и ВС//AD 3) Угол ВМА = углу CAD - как накрест лежащие углы при параллельных прямых ВС И АD и секущей АМ 4) угол ВАМ = углу ВМА = углу САD. Отсюда угол ВАМ = углу СAD. Следовательно АМ - бис-са угла BAD. ч.т.д.