Дано: АМ и ВМ - наклонные.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Найти: АМ и ВМ
Пусть ВМ у нас Х см, тогда АМ по условию 2Х см
Т.к. по условию АС и ВС - проекции АМ и ВМ, то МС⊥ плоскости а по определению.
Мы получили два прямоугольных треугольника АМС и ВМС, где наклонные - гипотенузы, а МС - общий катет, который можно найти по теореме Пифагора.
Из Δ АМС катет МС = (2Х)² - АС²
Из Δ ВМС катет МС = Х² - ВС²
Приравняем выражения для одного и того же катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Подставим значения проекций и решим уравнение относительно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- это сторона ВМ
2Х = 4*2 = 8 (см) это сторона АВ
ответ: ВМ = 8 см; АМ = 4 см
Дано: АМ і ВМ - похилі.
Знайти: АМ і ВМ
Рішення:
Нехай ВМ у нас Х см, тоді АМ за умовою 2Х см
Оскільки за умовою АС і ВС - проекції АМ і ВМ, то МС⊥ площині а за визначенням.
Ми отримали два прямокутних трикутника АМС і ВМС, де похилі - гіпотенузи, а МС - спільний катет, який можна знайти за теоремою Піфагора.
З Δ АМС катет МС² = (2Х)² - АС²
З Δ ВМС катет МС² = Х² - ВС²
Приравняем вирази для одного і того ж катета:
Підставимо значення проекцій і вирішимо рівняння відносно Х
Х = 4 (см) --- це сторона ВМ
2Х = 4*2 = 8 (см) це сторона АВ
Відповідь: ВМ = 8 см; АМ = 4 см
205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -
Дано: АМ и ВМ - наклонные.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Найти: АМ и ВМ
Пусть ВМ у нас Х см, тогда АМ по условию 2Х см
Т.к. по условию АС и ВС - проекции АМ и ВМ, то МС⊥ плоскости а по определению.
Мы получили два прямоугольных треугольника АМС и ВМС, где наклонные - гипотенузы, а МС - общий катет, который можно найти по теореме Пифагора.
Из Δ АМС катет МС = (2Х)² - АС²
Из Δ ВМС катет МС = Х² - ВС²
Приравняем выражения для одного и того же катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Подставим значения проекций и решим уравнение относительно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- это сторона ВМ
2Х = 4*2 = 8 (см) это сторона АВ
ответ: ВМ = 8 см; АМ = 4 см
Дано: АМ і ВМ - похилі.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Знайти: АМ і ВМ
Рішення:
Нехай ВМ у нас Х см, тоді АМ за умовою 2Х см
Оскільки за умовою АС і ВС - проекції АМ і ВМ, то МС⊥ площині а за визначенням.
Ми отримали два прямокутних трикутника АМС і ВМС, де похилі - гіпотенузи, а МС - спільний катет, який можна знайти за теоремою Піфагора.
З Δ АМС катет МС² = (2Х)² - АС²
З Δ ВМС катет МС² = Х² - ВС²
Приравняем вирази для одного і того ж катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Підставимо значення проекцій і вирішимо рівняння відносно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- це сторона ВМ
2Х = 4*2 = 8 (см) це сторона АВ
Відповідь: ВМ = 8 см; АМ = 4 см
205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -