Тр-к АСВ , <C=90, гипотенуза АВ= диаметру описанной окр-ти, значит АВ=2R=2*13=26, BC-основание. Впишем окр-ть в тр-к, О-центр вписанной окр-ти из т.О проведем радиусы в точки касания, ОК_I_ СВ,
ОМ_I_АС, ОР_I_ AB, по теореме о касательных СМ=СК=4, КВ=ВР=х,
АР=АМ=26-х, тогда АС=26-х+4=30-х, СВ=4+х, тогда по теор ПИфагора для тр-ка АВС: АВ^2=AC^2+CB^2, 26^2=(30-x)^2+(4+x)^2, возведем в квадрат, получим ур-е 2x^2-52x+240=0, x^2-26x+120=0, корни x1=6, x2=20, оба корня подходят, тогда АС=30-6=24, СВ=4+6=10 или АС=10,
Все задачи изображены на рисунке в приложении. 1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ. 2) Длина вектора по теореме Пифагора R = √(3²+4²) = √25 = 5 - ОТВЕТ 3) Координаты середины отрезка - среднее арифметическое координат концов отрезка. Сх= (-10 + (-2)/2 = -6 Су= (5 + 1)/2 = 3 и окончательно С(-6;3) - ОТВЕТ 4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ 5) Координаты точки D - середины отрезка АС. Dx = (4-2)/2 = 1 Dy = (-3 +1)/2 = -1 Окончательно координаты точки D(1;-1) - ОТВЕТ
60 и 120
Объяснение:
Тр-к АСВ , <C=90, гипотенуза АВ= диаметру описанной окр-ти, значит АВ=2R=2*13=26, BC-основание. Впишем окр-ть в тр-к, О-центр вписанной окр-ти из т.О проведем радиусы в точки касания, ОК_I_ СВ,
ОМ_I_АС, ОР_I_ AB, по теореме о касательных СМ=СК=4, КВ=ВР=х,
АР=АМ=26-х, тогда АС=26-х+4=30-х, СВ=4+х, тогда по теор ПИфагора для тр-ка АВС: АВ^2=AC^2+CB^2, 26^2=(30-x)^2+(4+x)^2, возведем в квадрат, получим ур-е 2x^2-52x+240=0, x^2-26x+120=0, корни x1=6, x2=20, оба корня подходят, тогда АС=30-6=24, СВ=4+6=10 или АС=10,
СВ=24, S=1/2*АС*СВ=1/2*24*10=120, Р=26+24+10=60
1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ.
2) Длина вектора по теореме Пифагора
R = √(3²+4²) = √25 = 5 - ОТВЕТ
3) Координаты середины отрезка - среднее арифметическое координат концов отрезка.
Сх= (-10 + (-2)/2 = -6
Су= (5 + 1)/2 = 3 и окончательно
С(-6;3) - ОТВЕТ
4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка
AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ
5) Координаты точки D - середины отрезка АС.
Dx = (4-2)/2 = 1
Dy = (-3 +1)/2 = -1
Окончательно координаты точки
D(1;-1) - ОТВЕТ