Площадь боковой поверхности правильного тетраэдра равна: Sбок=(3/4)√3а2, где а- длина его стороны. 108√3=(3/4)√3а2. Находим а=√(108*4/3)=√(36*4)=6*2=12 см. Стороны ▲-ка ДОТ равны половине а, то есть B=12/2=6 см Радиус окружности вписанной в правильный ▲, равен; r=b/(2√3)=6/(2√3)=3/√3=3 см. Радиус в точке касания делят окружность на 3 дуги, градусная мера которых составляет 360 градусов/3=120 градусов. Площадь сектора, ограниченного двум радиусами, проведёнными в точке касания и другой окружности большей 180 градусов-это 2/3 площади круга: S=(2/3)Nr2=N*(2*(√3)2/3=2N см2
Шар описан около пирамиды, значит основание пирамиды вписано в круг - сечение шара, Н - центр основания и центр сечения, НС - радиус сечения.
Радиус окружности, описанной около правильного треугольника:
r = a√3/3, где а - сторона треугольника.
CH = AB√3/3 = 9√3 / 3 = 3√3 см.
Центр шара - точка О - лежит на пересечении высоты пирамиды и серединного перпендикуляра к ее ребру.
SO = OC = R - радиус шара.
OH = SH - SO = 10 - R
ΔOHC: ∠OHC = 90°, по теореме Пифагора
CO² = OH²+ CH²
R² = (10 - R)² + 27
R² = 100 - 20R + R² + 27
20R = 127
R = 6,35 см
Sбок=(3/4)√3а2, где а- длина его стороны.
108√3=(3/4)√3а2.
Находим а=√(108*4/3)=√(36*4)=6*2=12 см.
Стороны ▲-ка ДОТ равны половине а, то есть B=12/2=6 см
Радиус окружности вписанной в правильный ▲, равен;
r=b/(2√3)=6/(2√3)=3/√3=3 см.
Радиус в точке касания делят окружность на 3 дуги, градусная мера которых составляет 360 градусов/3=120 градусов.
Площадь сектора, ограниченного двум радиусами, проведёнными в точке касания и другой окружности большей 180 градусов-это 2/3 площади круга: S=(2/3)Nr2=N*(2*(√3)2/3=2N см2