S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
1. по свойству параллельных прямых и секущей <ВСА=<САD=40° (накрест лежащие углы)
рассмотрим ∆ABC AB=BC=> ∆ABC равнобедренный =><ВАС=<ВСА=40°
<А=<САD+<BAC= 40°+40°=80°
<В=180°-2*<ВСА=180°-2*40°=100°
т.к. ABCD AB=CD=> трапеция равнобедренная=> <D=80° <C=100°
2. дополнительное построение СН; СН_L АD
Рассмотрим ∆CHD <H=90°
<DCH=90°-<D=45° => ∆CHD равнобедренный прямоугольный треугольник => СН=НD
т.к. СН _L AD; AB _L AD и BC||AD=>
AH=10; CH=10 => HD=10
AD= AH+HD=10+10=20