№1 За угол между диагоналями принимается больший из углов,значит им будет угол ВОС. Угол АВО=СРО=30гр. как накрест лежащие при параллельных прямых АР и ВС.Угол СВО =90-30=60гр. .Значит уол ВСО тоже равен 60 гр. так как точкой пересечения диагонали прямоугольника делятся на равные отрезки т.е ВО=СО .Из этого следует,что треугольник ВОС равнобедренный значит угол ВОС=180-(60+60)=60гр.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10 КД=10-6=4. Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10 ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52 решаем уравнение х=6,КР=10+6=16
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10
КД=10-6=4.
Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА
ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10
ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52
решаем уравнение х=6,КР=10+6=16
АВ - гипотенуза, СН - высота
АН = 3 см
НВ = 9 см
Объяснение:
Дано:
тр АВС (уг С=90*)
уг В = 30*
Ас = 6 см
СН - высота
Найти:
АН и НВ - ?
1) рассм тр АВС
АВ = 2* АС по св-ву катета, лежащего против угла в 30*,
АВ = 2*6 = 12 см
уг А = 90 - 30 = 60* по св-ву углов в прямоуг тр
2) рассм тр АНС, в нём уг А = 60* (из п1), уг Н = 90* (по усл СН - высота)
уг НСА = 90-60 = 30* по св-ву углов прямоуг тр;
АН = АС : 2 ; АН = 6 : 2 = 3 см по св-ву катета, лежащего против угла в 30*
3) АВ = АН + НВ
АВ = 12 см из 1 п
АН = 3 см из 2 п
НВ = 12 - 3 = 9 см