Нарисуем прямую и отметим на ней три точки А, В, С. (см. рисунок)
Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными ее точками.
Или проще говоря, отрезок это часть прямой, ограниченная двумя точками.
На рисунке получилось три отрезка:
АВ (рис. 1)
ВС (рис.2)
АС (рис. 3)
Луч – часть прямой, которая состоит из всех точек этой прямой, лежащих по одну сторону от данной точки. Любая точка на прямой разделяет прямую на два луча.
Отрезки пересекаются в их общей середине. Докажите, что .
Дано:.
Доказать: .
Доказательство:
Тогда, по первому признаку равенства треугольников, .
Тогда .
Поскольку эти углы являются накрест лежащими при прямых и секущей , то по первому признаку параллельности прямых , что и требовалось доказать.
Задача 1: отрезки и пересекаются в точке и делятся этой точкой пополам. Доказать параллельность и .Треугольники и равны по первому признаку равенства треугольников. и по условию. как вертикальные. Из равенства треугольников следует и равенство их соответствующих элементов. (накрест лежащие углы). Следовательно, прямые и параллельные. , что и требовалось доказать.
Нарисуем прямую и отметим на ней три точки А, В, С. (см. рисунок)
Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными ее точками.
Или проще говоря, отрезок это часть прямой, ограниченная двумя точками.
На рисунке получилось три отрезка:
АВ (рис. 1)
ВС (рис.2)
АС (рис. 3)
Луч – часть прямой, которая состоит из всех точек этой прямой, лежащих по одну сторону от данной точки. Любая точка на прямой разделяет прямую на два луча.
Точка А делит прямую на лучи: а и АС. (рис. 4)
Точка В делит прямую на лучи: ВА и ВС. (рис. 5)
Точка С делит прямую на лучи: СА и с. (рис. 6)
Получилось три отрезка и шесть лучей.
Отрезки пересекаются в их общей середине. Докажите, что .
Дано:.
Доказать: .
Доказательство:
Тогда, по первому признаку равенства треугольников, .
Тогда .
Поскольку эти углы являются накрест лежащими при прямых и секущей , то по первому признаку параллельности прямых , что и требовалось доказать.
Задача 1: отрезки и пересекаются в точке и делятся этой точкой пополам. Доказать параллельность и .Треугольники и равны по первому признаку равенства треугольников. и по условию. как вертикальные. Из равенства треугольников следует и равенство их соответствующих элементов. (накрест лежащие углы). Следовательно, прямые и параллельные. , что и требовалось доказать.