б)4 Итак, что мы имеем: треугольник АВС, где угол А=90 градусов, и высота АD делит его на два прямоугольных треугольника. Начнем с того, что попроще: треугольник ADB (угол D=90 градусов), катет AD=12, гипотенуза АВ=20, по теореме Пифагора 20^2=12^2+DB^2 Таким образом, сторона DB=16 Теперь рассмотрим второй треугольник, получившийся при делении большого треугольника высотой: CDA, где угол D =90 градусов. Катет AD=12, катет DC=X, гипотенуза AC=Y По все той же теореме Пифагора получаем: Y^2=12^2+X^2 Теперь рассмотрим исходный треугольник АВС Катет АВ=20, катет АС=Y (смотри выше), гипотенуза СВ=X+16 По теореме Пифагора получаем: 20^2+Y^2=(X+16)^2 => Y^2=X^2+32X+256-400 => Y^2=X^2+32X-144 подставляем в уравнение Y^2=12^2+X^2 выраженное значение Y, получаем: X^2+32X-144=12^2+X^2 32X=288 X=9
Таким образом, гипотенуза ВС=16+9=25 Катет АС=15 Косинус угла С равен отношению прилежащего катета к гипотенузе, т.е. cos C= AC/CB=15/25=3/5
редняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
средняя линия треугольника
Доказательство.
Пусть дан Δ ABC и его средняя линия ED. Проведем прямую параллельную стороне AB через точку D. По теореме Фалеса она пересекает отрезок AC в его середине, т.е. совпадает с DE. Значит, средняя линия параллельна AB. Проведем теперь среднюю линию DF. Она параллельна стороне AC. Четырехугольник AEDF – параллелограмм. По свойству параллелограмма ED=AF, а так как AF=FB по теореме Фалеса, то ED = ? AB. Теорема доказана.
б)4 Итак, что мы имеем: треугольник АВС, где угол А=90 градусов, и высота АD делит его на два прямоугольных треугольника.
Начнем с того, что попроще: треугольник ADB (угол D=90 градусов), катет AD=12, гипотенуза АВ=20, по теореме Пифагора 20^2=12^2+DB^2
Таким образом, сторона DB=16
Теперь рассмотрим второй треугольник, получившийся при делении большого треугольника высотой:
CDA, где угол D =90 градусов.
Катет AD=12, катет DC=X, гипотенуза AC=Y
По все той же теореме Пифагора получаем:
Y^2=12^2+X^2
Теперь рассмотрим исходный треугольник АВС
Катет АВ=20, катет АС=Y (смотри выше), гипотенуза СВ=X+16
По теореме Пифагора получаем:
20^2+Y^2=(X+16)^2 => Y^2=X^2+32X+256-400 => Y^2=X^2+32X-144
подставляем в уравнение Y^2=12^2+X^2 выраженное значение Y, получаем:
X^2+32X-144=12^2+X^2
32X=288
X=9
Таким образом, гипотенуза ВС=16+9=25
Катет АС=15
Косинус угла С равен отношению прилежащего катета к гипотенузе, т.е. cos C= AC/CB=15/25=3/5
редняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
средняя линия треугольника
Доказательство.
Пусть дан Δ ABC и его средняя линия ED.
Проведем прямую параллельную стороне AB через точку D. По теореме Фалеса она пересекает отрезок AC в его середине, т.е. совпадает с DE. Значит, средняя линия параллельна AB.
Проведем теперь среднюю линию DF. Она параллельна стороне AC. Четырехугольник AEDF – параллелограмм. По свойству параллелограмма ED=AF, а так как AF=FB по теореме Фалеса, то ED = ? AB. Теорема доказана.