Такое изящное решение :) Из точки А выходят три луча - AD и два симметричных (то есть образующих с лучом AD равные углы) AC и AB. На луче АС, помимо точки E, такой, что ED перпендикулярно AD, надо отметить точку B1, так, что AB1 = AB; точно так же можно на продолжении луча AB отметить точки E1 и C1, симметричные точка Е и С относительно AD. Ясно, что отрезок B1C1, проходящий через точку D, симметричен отрезку BC, и угол CDE = угол E1DB = угол EDB1; то есть в треугольнике B1DC DE - биссектриса, и CE/EB1 = CD/DB1; но DB1 = DB, и CD/DB = b/c; Если для простоты записи теперь обозначить СЕ = z; EB1 = y; AE = x; то x + z = b; x - y = c; z/y = b/c; Собственно, все уже решено. Осталось последовательно исключить сначала z, потом y, и останется выражение для x, который и надо найти. z = y*b/c; y = x - c; x + b*(x - c)/c = b; x = 2*b*c/(b + c);
Чертеж к задаче - во вложении. Пусть Т и Р - центры пересекающихся окружностей, К и М - точки пересечения окружностей. КМ = 24. А и В - точки касания окружностей с прямой а. Радиусы ТА=ТМ=ТК=20, РВ=РМ=РК=13. Согласно теореме: Окружность и прямая, а также две окружности могут пересечься не более чем в двух точках.При этом точки пересечения окружности с прямой симметричны относительно перпендикуляра к этой прямой, проходящего через центр, а точки пересечения двух окружностей симметричны относительно прямой, проходящей через их центры. - получим, что ЕМ=ЕК=12, ТР⊥КМ. В ∆ ТМЕ по теореме Пифагора
В ∆ РМЕ по теореме Пифагора
Значит, ТР=ТЕ+ЕР=16+5=21. Рассмотрим прямоугольную трапецию ТАВР. Проведем высоту РС. Тогда АВ=РС, РВ=АС и ТС=ТА-АС=20-13=7 В ∆ ТРС по теореме Пифагора
Из точки А выходят три луча - AD и два симметричных (то есть образующих с лучом AD равные углы) AC и AB. На луче АС, помимо точки E, такой, что ED перпендикулярно AD, надо отметить точку B1, так, что AB1 = AB; точно так же можно на продолжении луча AB отметить точки E1 и C1, симметричные точка Е и С относительно AD. Ясно, что отрезок B1C1, проходящий через точку D, симметричен отрезку BC, и угол CDE = угол E1DB = угол EDB1; то есть в треугольнике B1DC DE - биссектриса, и CE/EB1 = CD/DB1; но DB1 = DB, и CD/DB = b/c;
Если для простоты записи теперь обозначить СЕ = z; EB1 = y; AE = x; то
x + z = b;
x - y = c;
z/y = b/c;
Собственно, все уже решено. Осталось последовательно исключить сначала z, потом y, и останется выражение для x, который и надо найти.
z = y*b/c;
y = x - c;
x + b*(x - c)/c = b;
x = 2*b*c/(b + c);
Пусть Т и Р - центры пересекающихся окружностей, К и М - точки пересечения окружностей. КМ = 24. А и В - точки касания окружностей с прямой а.
Радиусы ТА=ТМ=ТК=20, РВ=РМ=РК=13.
Согласно теореме: Окружность и прямая, а также две окружности могут пересечься не более чем в двух точках.При этом точки пересечения окружности с прямой симметричны относительно перпендикуляра к этой прямой, проходящего через центр, а точки пересечения двух окружностей симметричны относительно прямой, проходящей через их центры. - получим, что ЕМ=ЕК=12, ТР⊥КМ.
В ∆ ТМЕ по теореме Пифагора
В ∆ РМЕ по теореме Пифагора
Значит, ТР=ТЕ+ЕР=16+5=21.
Рассмотрим прямоугольную трапецию ТАВР. Проведем высоту РС.
Тогда АВ=РС, РВ=АС и ТС=ТА-АС=20-13=7
В ∆ ТРС по теореме Пифагора
ответ: