Плоскости, а которых лежат прямые АВ и АС перпендикулярны, значит и перпендикуляры ВН и СН, опущенные из точек В и С на линию пересечения плоскостей, взаимно перпендикулярны и образуют прямоугольный треугольник НВС. В этом треугольнике найдем по Пифагору гипотенузу ВС: ВС=√[2*(4√2)²]=8 см. Тогда площадь треугольника АВС по Герону: S=√[p*(p-a)*(p-b)*(p-c)], где р-полупериметр, a,b,c - стороны треугольника. В нашем случае р=(5+5+8):2==9 см. Тогда S=√(9*1*4*4)=12 cм². Можно и так: Проведем высоту АК в равнобедренном треугольнике АВС. Она является и медианой. Значит СК=4 см и по Пифагору АК=√(5²-4²)=3. Тогда Sabc=(1/2)*8*3=12 cм². ответ: площадь треугольника АВС равна 12 см².
В четырехугольник, значит, и в трапецию, вписать окружность можно тогда и только тогда, когда суммы ее противоположных сторон равны. Следовательно, АВ+СD=AD+BC=20 В комментарии к условию указано, что трапеция равнобедренная. Следовательно. АВ=СD=20:2=10 Соединим точки касания окружности М и Н. Опустим из В и С перпендикуляры ВК и СР. КР=ВС=ТЕ=6 АК=(АD-DC):2=(14-6):2=4 По свойству отрезков касательной из одной точки ВМ=ВО=ОС=СН=3 Тогда АМ=НD=10-3=7 Рассмотрим треугольники АВК и ВМТ. Они подобны, т.к. МН параллельна АD⇒. МТ:АК=ВМ:ВА МТ:4=3:10 10 МТ=12 МТ=1,2 ЕН=МТ МН=МТ+ТЕ+ЕН=8,6
В этом треугольнике найдем по Пифагору гипотенузу ВС:
ВС=√[2*(4√2)²]=8 см.
Тогда площадь треугольника АВС по Герону:
S=√[p*(p-a)*(p-b)*(p-c)], где р-полупериметр, a,b,c - стороны треугольника.
В нашем случае р=(5+5+8):2==9 см.
Тогда S=√(9*1*4*4)=12 cм².
Можно и так:
Проведем высоту АК в равнобедренном треугольнике АВС. Она является и медианой.
Значит СК=4 см и по Пифагору АК=√(5²-4²)=3. Тогда Sabc=(1/2)*8*3=12 cм².
ответ: площадь треугольника АВС равна 12 см².
Следовательно,
АВ+СD=AD+BC=20
В комментарии к условию указано, что трапеция равнобедренная. Следовательно.
АВ=СD=20:2=10
Соединим точки касания окружности М и Н.
Опустим из В и С перпендикуляры ВК и СР.
КР=ВС=ТЕ=6
АК=(АD-DC):2=(14-6):2=4
По свойству отрезков касательной из одной точки
ВМ=ВО=ОС=СН=3
Тогда АМ=НD=10-3=7
Рассмотрим треугольники АВК и ВМТ.
Они подобны, т.к. МН параллельна АD⇒.
МТ:АК=ВМ:ВА
МТ:4=3:10
10 МТ=12
МТ=1,2
ЕН=МТ
МН=МТ+ТЕ+ЕН=8,6