1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Найдем координату точки F. F- точка , которая делит пополам сторону АВ ( так как CF - медиана).
F = ( (Xa+Xb)/2 ; (Ya+Yb)/2) = ((-1+3)/2 ; (4+2)/2)= (1;3).
Вектор CF = (1-1; 3-(-3)) = (0; 6).
Уравнение медианы CF: (x - 1)/0 = (y - 4)/6.
Получаем общее уравнение CF: 6x - 6 = 0 или х - 1 = 0.
Находим уравнение стороны АС.
Вектор АС = (1-(-1); -3-4) = (2; -7).
Уравнение АС: (x + 1)/2 = (y - 4)/(-7) или в общем виде 7x + 2y - 1 = 0.
Находим угол α между прямыми АС и CF.
cos α = (1*7 + 0*2)/(1*√53) = 7√53/53.
Угол α = 15,9454°.