Может ли прямая, перпендикулярная к плоскости, быть параллельна прямой, лежащей в этой плоскости? 8. Верно ли, что прямая перпендикулярна к плоскости, если она перпендикулярна к двум прямым, параллельным этой плоскости?
9. Могут ли две пересекающиеся прямые быть перпендикулярными к одной плоскости?
Дано:
ABCDA₁B₁C₁D₁ - прямая призма; ABCD - основание призмы, равнобедренная трапеция; AD - основание трапеции; BC = 5см; AD = 11см; AC = 10см; AC₁ = 26см.
*Все диагонали призмы равны между собой (BD₁=B₁D=AC₁=A₁C), поскольку призма прямая и в основании равнобедренная трапеция.
Найти:
V - ?
В трапеции ABCD:
опустим перпендикуляры BH₁ и CH₂;
BH₁⊥AD, BC║AD ⇒ BCH₂H₁ - прямоугольник;
BC = H₁H₂ = 5см, как противоположные стороны прямоугольника;
трапеция равнобедренная, поэтому AH₁ = H₂D;
AH₁ = (AD-H₁H₂):2 = (11-5):2 = 3 см;
AH₂ = AH₁+H₁H₂ = 3+5 = 8 см.
В прямоугольном ΔAH₂C (∠CH₂A=90°):
AC=10см; AH₂=8см;
По теореме Пифагора:
(CH₂)² = AC²-(AH₂)²;
(CH₂)² = 10²-8² = 100-64 = 6² см²;
CH₂ = 6см.
CC₁⊥(ABC) т.к. призма прямая; AC⊂(ABC);
Тогда CC₁⊥AC.
В прямоугольном ΔACC₁ (∠ACC₁=90°):
AC₁=26см; AC=10см;
По теореме Пифагора:
(CC₁)² = (AC₁)²-AC²;
(CC₁)² = 26²-10² = (26-10)(26+10) = 16·36 = (4·6)² см²;
CC₁ = 24см.
Объём призмы равен значению произведения её высоты и площади основания. Боковое ребро прямой призмы является также и высотой.Площадь трапеции равна значению произведения полусуммы оснований и высоты трапеции.V = CC₁·S(ABCD) = = 12·(5+11)·6 = 72·16 = 1152 см²
ответ: 1152см².
1) Через пересекающиеся прямые можно провести плоскость. ⇒ а и b лежат в одной плоскости. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. А1В1||А2В2.
∆ А1КВ1~А2КВ2, т.к. углы при пересечении параллельных оснований секущими а и b равны, и угол К - общий.
Из подобия следует: КВ1:КВ2=А1В1:А2В2=3/4
Примем В1В2=х, тогда КВ2=14+х
14:(14+х)=3:4
56=42+3х ⇒ ⇒
см
2) Медианы треугольника пересекаются, параллельны плоскости альфа, следовательно, плоскость треугольника, в которой они лежат, параллельна плоскости альфа.
СЕ и ВF параллельны ( дано), следовательно, через них можно провести плоскость, притом только одну.
Если две параллельные плоскости пересечены третьей,
то линии их пересечения параллельны.⇒ СВ||EF.
Четырехугольник, у которого противоположные стороны попарно параллельны, является параллелограммом, ч.т.д.
3) Все грани параллелепипеда ABCDA1B1C1D1 - квадраты со стороной a.⇒ этот параллелепипед - куб.
DA1В1С - прямоугольник, т.к. по т. о 3-х перпендикулярах диагонали А1D и В1С параллельных граней перпендикулярны ребрам А1В1 и DC . Проведем через середины АD и ВC прямые КМ и ОН параллельно А1D и В1C, соединим К и О, М и Н. Пересекающиеся КО и КА параллельны пересекающимся АА1 и АD. ⇒
Плоскость сечения МКОН параллельна плоскости DA1B1C ⇒ . Стороны сечения КМНО пересекают ребра АА1, ВВ1, ВС и AD в их середине. КМНО - прямоугольник.
В параллельных гранях диагонали А1D=B1C=a:sin45°=a√2
КМ и ОН –– средние линии ∆ АА1D и ВВ1С соответственно и равны половине А1D- равны
КО=МН=АВ=а
Р (КМНО=2(МН+КМ)=2a+2•(a√2/2)=a•(2+√2)