1) если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны. 2)если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами , равны, то такие треугольники подобны. 3)если три стороны одного треугольника пропорциональны трем сторонам другого, то таки треугольники подобны. 4) средней линией треугольника называется отрезок, соединяющий середины двух его сторон. 5) прямая, имеющая с окружностью только одну общую точку, называться касательной к окружности, а их общая точка называется точкой касания прямой и окружности. 6)касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. 7) угол с вершиной в центре окружности называется ее центральным углом. 8) угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом. 9) прямую, проходящую через середину отрезка перпендикулярно к нему.
1. Прямоугольным Треугольником называется Треугольник, у которого один из Углов равен 90°. Признаки Равенства Прямоугольных Треугольников: 1) Если Катеты одного Прямоугольного Треугольника соответственно равны Катетам другого Прямоугольного Треугольника, то такие Треугольники равны. 2) Если Катет и Прилежащий к нему Острый Угол одного Прямоугольного Треугольника соответственно равны Катету и Прилежащему к нему Острому Углу другого Прямоугольного Треугольника, то такие Треугольники равны. 3) Если Гипотенуза и Острый Угол одного Прямоугольного Треугольника соответственно равны Гипотенузе и Острому Углу другого Прямоугольного Треугольника, то такие Треугольники равны. Доказательства: Исходя из свойства, что сумма Двух Острых Углов Прямоугольного Треугольника равна 90°, следует, что в других Треугольниках Два Острых Угла также равны, поэтому Треугольники равны по 2 Признаку Равенства Треугольников, то есть по Гипотенузе и Прилежащим к ней Двум Углам. 4) Если Гипотенуза и Катет одного Прямоугольного Треугольника соответственно равны Гипотенузе и Катету другого Прямоугольного Треугольника, то такие Треугольники равны. 2. Параллельными Прямыми называются Две Прямые на Плоскости, если они не Пересекаются. 1) Если при Пересечении Двух Прямых Секущей Накрест Лежащие Углы равны, то Прямые Параллельны. Доказательства: Пусть при Пересечении Прямых a и b Секущей AB Накрест Лежащие Углы равны, например: ∠1=∠2. Докажем, что a ║ b: Если ∠1 и ∠2 - Прямые, то Прямые a и b Перпендикулярный к Прямой AB ⇒ a║b. 2) Если при Пересечении Двух Прямых Секущей Соответственные Углы равны, то Прямые Параллельны. 3) Если при Пересечении Двух Прямых Секущей сумма Односторонних Углов Равна 180°, то Прямые Параллельны. 3. Можно суть-суть больше информации?
2)если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами , равны, то такие треугольники подобны.
3)если три стороны одного треугольника пропорциональны трем сторонам другого, то таки треугольники подобны.
4) средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
5) прямая, имеющая с окружностью только одну общую точку, называться касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
6)касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
7) угол с вершиной в центре окружности называется ее центральным углом.
8) угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.
9) прямую, проходящую через середину отрезка перпендикулярно к нему.
Признаки Равенства Прямоугольных Треугольников:
1) Если Катеты одного Прямоугольного Треугольника соответственно равны Катетам другого Прямоугольного Треугольника, то такие Треугольники равны.
2) Если Катет и Прилежащий к нему Острый Угол одного Прямоугольного Треугольника соответственно равны Катету и Прилежащему к нему Острому Углу другого Прямоугольного Треугольника, то такие Треугольники равны.
3) Если Гипотенуза и Острый Угол одного Прямоугольного Треугольника соответственно равны Гипотенузе и Острому Углу другого Прямоугольного Треугольника, то такие Треугольники равны.
Доказательства:
Исходя из свойства, что сумма Двух Острых Углов Прямоугольного Треугольника равна 90°, следует, что в других Треугольниках Два Острых Угла также равны, поэтому Треугольники равны по 2 Признаку Равенства Треугольников, то есть по Гипотенузе и Прилежащим к ней Двум Углам.
4) Если Гипотенуза и Катет одного Прямоугольного Треугольника соответственно равны Гипотенузе и Катету другого Прямоугольного Треугольника, то такие Треугольники равны.
2. Параллельными Прямыми называются Две Прямые на Плоскости, если они не Пересекаются.
1) Если при Пересечении Двух Прямых Секущей Накрест Лежащие Углы равны, то Прямые Параллельны.
Доказательства:
Пусть при Пересечении Прямых a и b Секущей AB Накрест Лежащие Углы равны, например: ∠1=∠2. Докажем, что a ║ b:
Если ∠1 и ∠2 - Прямые, то Прямые a и b Перпендикулярный к Прямой AB ⇒ a║b.
2) Если при Пересечении Двух Прямых Секущей Соответственные Углы равны, то Прямые Параллельны.
3) Если при Пересечении Двух Прямых Секущей сумма Односторонних Углов Равна 180°, то Прямые Параллельны.
3. Можно суть-суть больше информации?