Сумма углов т-ка = 180⁰, а у нас один угол = 120, значит сумма двух углов при основании равнобедренного т-ка = 180 - 120 = 60 Значит, каждый из углов при основании = 60/2 = 30⁰ Когда провели высоту h, то получилось два одинаковых прямоугольных треугольника, у которых высота - есть катет, лежащий против угла = 30⁰. А по теореме Пифагора - катет, лежащий против угла в 30 градусов = половине гепотенузы. В данном случае гепотенуза - это боковые одинаковые стороны треугольника и каждая из них будет = 2 h(потому, что катет h). Третья сторона треугольника (его основание) состоит из двух катетов треугольников, полученных при опускании высоты. Величина этих катетов (каждого) = согласно т.Пифагора 2 h² - h² = h². А основание состоит из двух таких катетов - 2h². Значит, выражение для периметра данного по условию треугольника будет таким: 2h +2h + 2h² =4h +2h² = 2h (2+h).
Значит, каждый из углов при основании = 60/2 = 30⁰
Когда провели высоту h, то получилось два одинаковых прямоугольных треугольника, у которых высота - есть катет, лежащий против угла = 30⁰. А по теореме Пифагора - катет, лежащий против угла в 30 градусов = половине гепотенузы. В данном случае гепотенуза - это боковые одинаковые стороны треугольника и каждая из них будет = 2 h(потому, что катет h). Третья сторона треугольника (его основание) состоит из двух катетов треугольников, полученных при опускании высоты. Величина этих катетов (каждого) = согласно т.Пифагора
2 h² - h² = h². А основание состоит из двух таких катетов - 2h². Значит, выражение для периметра данного по условию треугольника будет таким: 2h +2h + 2h² =4h +2h² = 2h (2+h).
Высота равностороннего треугольника при известной стороне 16 см будет составлять:
см.
Высота первого треугольника h у нас будет образовывать сторону второго треугольника CPM.
Угол с второго треугольника СРМ является прямым, поскольку через вершину С первого треугольника проведён перпендикуляр к плоскости треугольника АВС.
Находим строну РМ треугольника СРМ из соотношения:
Причём:
CМ = h = 8√3 см,
СР = 20 см.
PM=24.331 см
Угол с = 90°
Для решения задачи по этим данным необходимо найти величину угла < PMC = m. (m малое)
Из теоремы синусов:
Выводим формулу относительно Sin m:
Поскольку угол с является прямым (90°) и значение его синуса равно 1 (единице), то формула для нахождения величины угла m упрощается:
Подставляем значения в выведенную формулу и находим значения синуса угла m:
Находим величину угла m:
ответ: Угол между плоскостями АВС и АРВ составляет = 55.286°