Отрезки касательных, проведенных из одной точки, равны, а центры окружностей лежат на биссектрисе угла ASB. Тогда SK - биссектриса и высота равнобедренного треугольника ASB т.е. SK⊥AB. Аналогично, SН⊥ CD, тогда КН - искомое расстояние между прямыми АВ и CD.
Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.
Отрезки касательных, проведенных из одной точки, равны, а центры окружностей лежат на биссектрисе угла ASB. Тогда SK - биссектриса и высота равнобедренного треугольника ASB т.е. SK⊥AB. Аналогично, SН⊥ CD, тогда КН - искомое расстояние между прямыми АВ и CD.
Радиус, проведенный в точку касания, перпендикулярен касательной, значит ∠MBS = ∠ODS = 90°.
Угол при вершине S общий для треугольников MBS и ODS, значит треугольники подобны по двум углам.
SM : SO = MB : OD = 36 : 45 = 4 : 5
SO = SM + MO, а МО = 36 + 45 = 81
SM : (SM + 81) = 4 : 5
5SM = 4SM + 324
SM = 324
ΔSBM: ∠SBM = 90°
cos∠SMB = BM / SM = 36 / 324 = 1/9
ΔMBK: ∠MKB = 90°
KM = MB · cos∠SMB = 36 · 1/9 = 4
∠SOD = ∠SMB так как треугольники подобны.
ΔODH: ∠OHD = 90°
OH = OD · cos∠SOD = 45 · 1/9 = 5
KH = KM + MO - OH
KH = 4 + 36 + 45 - 5 = 80
Объяснение:
Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.