Центральный ∠АОС опирающийся на дугу АВС, равен двум углам СДА и равен 100°
По условию ∠ САД равен 79°
Центральный∠ СОД равен 79° ·2=158°
Так как окружность содержит 360°, центральный
∠ АОД равен 360°-100° -158°=102°
∠ АВД опирается на ту же дугу, что и ∠ АОД, поэтому равен его половине:
∠АВД=102°:2=51°
2)биссектрисы e и d делят внутренние накрест лежащие углы (которые равны) на 4 равных угла, 2 из которых являются также внутренними накрест лежащими для прямых e и d и секущей с. из равенства этих углов следует, что прямые e и d параллельны.
1)
∠ СДА равен 180°-130°=50°
Центральный ∠АОС опирающийся на дугу АВС, равен двум углам СДА и равен 100°
По условию ∠ САД равен 79°
Центральный∠ СОД равен 79° ·2=158°
Так как окружность содержит 360°, центральный
∠ АОД равен 360°-100° -158°=102°
∠ АВД опирается на ту же дугу, что и ∠ АОД, поэтому равен его половине:
∠АВД=102°:2=51°
2)биссектрисы e и d делят внутренние накрест лежащие углы (которые равны) на 4 равных угла, 2 из которых являются также внутренними накрест лежащими для прямых e и d и секущей с. из равенства этих углов следует, что прямые e и d параллельны.
ответ: б) AB = 18 см, AC = 6 см в) AC = 33 см
Объяснение:
б) BC = BP + CP = 18 см
Обозначим две другие стороны Δ через x = AB и y = AC.
Из того, что периметр равен 42 получим:
x + y + 18 =42 ⇒ x + y = 24 (1)
Биссектриса делит противоположную сторону на отрезки пропорциональные сторонам ⇒
Подставим последнее равенство в (1) и получим:
4y = 24
y = 6
Тогда x = 18
в) Обозначим x = AC. Т.к. BE медиана, то AE = CE = x/2, AD = x/2 - 4.5, CD = x\2 +4.5
Биссектриса делит противоположную сторону на отрезки пропорциональные сторонам ⇒