Построим треугольник АВС. Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. Отсюда искомое расстояние ВК=ВД*sin30=12*1/2=6.
Сначала находим перпендикуляр проведенный к одной из сторон основы: домустим SК перпендикулярно АД тогда SК = корень из(169-25)=12 площадь одного трехугоьника образующего пирамиду= полупроизведение основы на высоту: (10*12)/2=60 см(квадратных) пл.полной поверхности=4*60+100=360(4 площади трехугольника +пл.основы) высота пирамиды: опускаем перпендикуляр с точки вершины(это и есть высота)в точку О, проводим диагональ через точку О, половина диагонали(ОД) =5корней из2, (свойство квадрата)тогда имея грань трехугольника SД находим высоту: корень из (169-50)=корень из 119
Построим треугольник АВС. Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. Отсюда искомое расстояние ВК=ВД*sin30=12*1/2=6.
Сначала находим перпендикуляр проведенный к одной из сторон основы:
домустим SК перпендикулярно АД тогда SК = корень из(169-25)=12
площадь одного трехугоьника образующего пирамиду= полупроизведение основы на высоту:
(10*12)/2=60 см(квадратных)
пл.полной поверхности=4*60+100=360(4 площади трехугольника +пл.основы)
высота пирамиды:
опускаем перпендикуляр с точки вершины(это и есть высота)в точку О, проводим диагональ через точку О, половина диагонали(ОД) =5корней из2, (свойство квадрата)тогда имея грань трехугольника SД находим высоту:
корень из (169-50)=корень из 119