Поэтому, как только начинаешь читать следы какого-нибудь одного существа, глядишь, а ты уже разбираешься в жизни сотен и тысяч других существ будь то звери птицы или даже растения. интересное это дело - читать следы. но самое интересное в этом то, что сколько бы ты ни читал их, до конца их ни как не прочитаешь.это от того, что следовую книгу пишет сама жизнь, которая идет все время вперед и никогда не останавливается, а следы, как и подобает , хотя и идут за жизнью, но остаются у нее позади. всем интересно читать эту следовую книгу и всем от этого бывает польза. только читать ее нужно строчка за строчкой, как на охоте, надо обязательно глядеть вперед, по направлению следов, тогда не ошибешься и заранее будешь знать, что надо делать в будущем.
Медианы треугольника пересекаются в одной точке.
Высоты треугольника пересекаются в одной точке.
В данном треугольнике эти точки совпадают - медианы являются также высотами.
Совпадение медианы и высоты к основанию - признак равнобедренного треугольника.
Таким образом данный треугольник является равнобедренным относительно любой стороны, то есть равносторонним.
O - точка пересечения медиан, AA1 - медиана, A1 - середина BC.
O - точка пересечения высот (ортоцентр), AA1 проходит через точку O => AA1 - высота, AA1⊥BC
∠AA1B=∠AA1C=90 (AA1 - высота)
BA1=CA1 (AA1 - медиана)
△BAA1=△CAA1 (по двум катетам, AA1 - общий) => AB=AC
(Доказали: Если медиана треугольника совпадает с его высотой, то треугольник равнобедренный.)
Аналогично: BB1 - медиана и высота к стороне AC => AB=BC
AB=AC=BC, △ABC - равносторонний