Можно с рисунком, где нужно Билет 4
1. Определение прямоугольника. Формулы площади прямоугольника. 2.Теорема о существовании окружности, вписанной в четырехугольник
(доказательство).
3. Признаки параллелограмма (доказательство одного из них)
4. Угол между двумя хордами АВ и АС равен 63°. Дугу окружности ВС,
лежащую внутри данного угла, разделили на три равные дуги BD, DQ и QC.
Найдите углы BDQ и DQC пятиугольника ABDQC.
5. В треугольнике ABC АВ = 16; ВС = 12; АС = 9; в треугольнике MNG
MN = 12; NQ = 9; QM = 6,75. Докажите, что данные треугольники подобны, и укажите пары равных углов данных треугольников.
Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70
Т.к. ∠ АОВ=∠ВОС=...=∠GОА=2π/7, то площадь одного из семи треугольников АОВ, ВОС,СОD, ...GОА может быть найдена как
0.5R²*sin2π/7, тогда площадь правильного семиугольника равна
3.5R²*sin2π/7=70⇒площадь искомой фигуры, состоящей из трех равных треугольников найдем так (3/7)(70)=30/см²/
да. еще раз. есть формула площади для треугольника.
это - половина произведения двух сторон на синус угла между ними. а 2π/7 - это центральный угол, а заодно и угол между данными сторонами. Нам нужно только увидеть. что таких треугольников равных семь, у правильного семиугольника, а нас интесуют только три из семи, т.е. 3/7 от 70