Строишь радиусы в точки, где кончается хорда. Получаешь р/б треугольник с углом при вершине 120 °. Строишь в нем высоту к основанию. Получаешь два равных прямоугольных треугольника с углами 30°, 60°, 90°. Высота делит хорду пополам, поэтому против угла 60° лежит сторона 6 корней из 3. Гипотенуза тр-ков, которая равна радиусу, равна (6 корней из 3)/cos 30 ° = 12. Отсюда, по определению меры угла, длина дуги = 12* (120/180)*ПИ = 8 ПИ. Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) = 48 ПИ.
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) =
48 ПИ.
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2