Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π
Точка Е равноудалена от точек А и В, значит АЕ=ВЕ
Р(Δ АВЕ)=АВ+АЕ+ВЕ
40=14+2АЕ ⇒ АЕ=13 см
Из прямоугольного треугольника ADE:
cos ∠ A= AD/AE=7/13
Так как треугольник АВС равнобедренный АВ=ВС, то и углы при основании равны
∠А=∠С
cos∠C=7/13
По теореме косинусов из треугольника ВЕС:
ВЕ²= ЕС² +ВС² - 2·ЕС·ВС·cos ∠C
13²= EC²+14²-2·EC·14·(7/13)
ЕС=х
Решаем квадратное уравнение:
·13х²-196х+351=0
D=(-196)²-4·13·351=38416-18252=20164=142²
x=(196-142)/26 =27/13 или х=(196+142)/26=13
АС=АЕ+ЕС=13+(27/13)=196/13
или
АС=13+13=26
Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π