Первая задача: а) Отметьте на координатной плоскости точкиA(1;5), B(3;6), C(2;13), D(5;5),E (7; 8), F (12; 4). Соедините их последовательно отрезками AB, BC, CD, DE, EF и FA и найдите площадь получившейся фигуры. б) При каких значениях k прямая y = kx имеет с данной фигурой хотя бы одну общую точку?
Вторая задача: Биссектриса PC и медиана QA треугольника PQR взаимно перпендикулярны и пересекаются в точке F . Площадь треугольника PQR равна 40. Найдите площадь треугольника FPQ.
Что бы вписать окружность в трапецию, необходимо что бы суммы противоположных сторон были равны. Следовательно сумма двух равных боковых сторон (20) должна равняться сумме двух оснований трапеции. Тогда второе основание соответственно равно 18 см. Площадь трапеции это полусумма оснований умноженная на высоту. Так как трапеция равнобедренная можем найти высоту: Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник. Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см. По теореме Пифагора найдем второй катет: 10^2=8^2+х^2 100=64+х^2 х^2=36 х=6 Высота трапеции равна 6 см. Можем найти площадь: S=(2+18)/2 *6 S=20/2 *6 S=10*6 S=60 см^2. ответ: площадь трапеции равна 60 см^2.
а) Отметьте на координатной плоскости точкиA(1;5), B(3;6), C(2;13), D(5;5),E (7; 8), F (12; 4). Соедините их последовательно отрезками AB, BC, CD, DE, EF и FA и найдите площадь получившейся фигуры.
б) При каких значениях k прямая y = kx имеет с данной фигурой хотя бы одну общую точку?
Вторая задача:
Биссектриса PC и медиана QA треугольника PQR взаимно перпендикулярны и пересекаются в точке F . Площадь треугольника PQR равна 40. Найдите площадь треугольника FPQ.
Если можно, ответы в комментарии :)
Тогда второе основание соответственно равно 18 см.
Площадь трапеции это полусумма оснований умноженная на высоту.
Так как трапеция равнобедренная можем найти высоту:
Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник.
Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см.
По теореме Пифагора найдем второй катет:
10^2=8^2+х^2
100=64+х^2
х^2=36
х=6
Высота трапеции равна 6 см. Можем найти площадь:
S=(2+18)/2 *6
S=20/2 *6
S=10*6
S=60 см^2.
ответ: площадь трапеции равна 60 см^2.