Площадь прямоугольника-s= a*b докажем, что s = ab.
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.
Объяснение:
125. <AOC=<BOD как вертикальные, △AOC=△BOD по 1му признаку, значит <ACO=<BDO а они накрест лежащие, значит AC ll BD
126. <1+<2=180 по условию, <2+смежный с ним угол тоже =180, значит этот смежный угол =<1, но они соответственные, значит a ll b
129. а) углы по 80 накрест лежащие, значит прямые параллельны, рассматриваем другую секущую, там <x = 40 как соответственные.
Также делаем б) в) доказываем параллельность прямых и рассматриваем другую секущую, где находится искомый угол
Итак, 130.
Здесь мы продолжим прямую СЕ до пересечения с АВ в точке F. Так как AB ll CD, то <DCE=<AFE=70 как накрест лежащие. <AEC - внешний угол в AEF.
Внешний угол треугольника равен сумме двух оставшихся углов треугольника. Значит <AEC=<AFE+<FAE(BAE)=70+40=110°
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.