N Використовуючи рис. 1, установіть відповідність між умовами
задач (1-4) і відповідями до них (А-Д).
о
А.
B.
0
ke
1 Знайдіть KP, якщо діаметр NP = 10,
акут а дорівнює 60°
2 Знайдіть KP, якщо Z NOA = 2AOK =
= 2KOP, NP=12
3 Знайдіть AN, якщо NC = CO, AC-CB,
R=4
P Р
Рис. 1
А Б В Г Д
4 Знайдіть NC, якщо R = 6, ZOAC = 30°,
NPI AB
3
Знайдіть кут між дотичною і хордою, які проведені з однієї точки кола, якщо хорда
дорівнює половині діаметра кола.
АД - диаметр, так как окружность в точке Д касается СД.
Отсюда следует, что треугольник АРД - прямоугольный.
Имеем 2 подобных треугольника: АРД и АВС.
Пусть ВС = х, РД = у.
Составим систему уравнений:
{х/АВ = АР/у,
{х² + РД² = АД² = ВС².
Подставим известные данные.
{(х/(9√10)) = 3/у,
{х² = 9 + у².
Из второго уравнения х = √(9 + у²).
Первое уравнение получится таким:
у*(√(9 + у²)) = 27√10.
Возведём обе части в квадрат и получим биквадратное уравнение:
y^4 + 9y^2 - 27²*10 = 0. Делаем замену: y² = z.
z² + 9z - 7290 = 0.
Находим дискриминант:
D=9^2-4*1*(-7290)=81-4*(-7290)=81-(-4*7290)=81-(-29160)=81+29160=29241;
Дискриминант больше 0, уравнение имеет 2 корня:
z_1=(2root29241-9)/(2*1)=(171-9)/2=162/2=81;
z_2=(-2root29241-9)/(2*1)=(-171-9)/2=-180/2=-90.
Обратная замена (отрицательное значение отбрасываем - из него корень не извлекается).
y = √81 = ±9.
Для длины принимаем положительное значение.
ответ: ДР = у = 9.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на отрезки, один из которых равен полусумме оснований, другой - их полуразности.
1) (15+9):2=12 см
2)(15-9):2=3 см
----------
Действительно, треугольники, которые отсекают две высоты равнобедренной трапеции, равны (см. рисунок).
Отсюда АН=(АD-BC):2
Проведем из С прямую параллельно диагонали , ВD до пересечения с продолжением АD в точке Е. DE║BC⇒CEDВ параллелограмм, DE=BC
АЕ=АD+BC
Треугольник АСЕ равнобедренный, его высота СК - медиана⇒
АК=АЕ:2, как и НD=АК=( АD+BC):2
----------
Рисунок второго приложения проще и не нуждается в особых комментариях.
Объяснение: