Что я вам скажу - этими заданиями, в которых есть шаблоны для ответов, куда надо что-то как-то вставить, убивают возможность думать.
Решение простое.
У треугольника есть правило - против большей стороны лежит больший угол, и против меньшей стороны лежит меньший угол.
А теперь собственно решение.
АВ - это меньшая сторона из двух (третью мы вообще не берем в учет), значит против нее лежит меньший угол из двух. А если он тупой, то другой будет еще больше, значит, тоже тупой. Но у треугольника два тупых угла быть не может.
Что я вам скажу - этими заданиями, в которых есть шаблоны для ответов, куда надо что-то как-то вставить, убивают возможность думать.
Решение простое.
У треугольника есть правило - против большей стороны лежит больший угол, и против меньшей стороны лежит меньший угол.
А теперь собственно решение.
АВ - это меньшая сторона из двух (третью мы вообще не берем в учет), значит против нее лежит меньший угол из двух. А если он тупой, то другой будет еще больше, значит, тоже тупой. Но у треугольника два тупых угла быть не может.
Значит, ответ такой - не может.
Неравенство треугольника описывает зависимость между длинами сторон любого треугольника.
Теорема (неравенство треугольника):
Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей точки.
Для трех точек A, B и C это означает, что
\[AB \le AC + BC\]
\[AC \le AB + BC\]
\[BC \le AB + AC\]
Равенство в этих соотношениях может быть только в том случае, когда все три точки лежат на одной прямой.
Отсюда следует, что длина любой стороны треугольника меньше суммы длин двух других сторон.
Например, неравенство треугольника для треугольника ABC записывается так
neravenstvo treugolnika
\[AB < AC + BC\]
\[AC < AB + BC\]
\[BC < AB + AC\]
Объяснение: