Трапеция получается равнобедренная: боковые стороны равны а, верхнее основание равно а, нижнее основание равно 2а. Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований (а+2а)/2=1,5а, а другой — полуразности оснований (2а-а)/2=0,5а. Значит высота h=√(а²-(0,5а)²)=а√3/2 Площадь трапеции Sт=(а+2а)/2*h=3а/2*а√3/2=3√3*а²/4 Правильный треугольник со сторонами 2а. Площадь треугольника Sтр=√3*(2а)²/4=√3а² Отношение Sт:Sтр=3√3*а²/4 : √3*а²=3/4.
Трапеция АВСД. Боковые стороны АВ и СД пересекаются в точке О, расстояния от О до концов меньшего основания ВС - это ВО и СО.
АВ=2,4, ВС=6, СД=2,6, АД=9
Рассмотрим треугольники AОD и BОC - они подобны по 1 признаку (по 2 углам): ∠О — общий и ∠ DAО=∠CBО (как соответственные углы при BC ∥ AD и секущей AО).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований (а+2а)/2=1,5а, а другой — полуразности оснований (2а-а)/2=0,5а.
Значит высота h=√(а²-(0,5а)²)=а√3/2
Площадь трапеции Sт=(а+2а)/2*h=3а/2*а√3/2=3√3*а²/4
Правильный треугольник со сторонами 2а.
Площадь треугольника Sтр=√3*(2а)²/4=√3а²
Отношение Sт:Sтр=3√3*а²/4 : √3*а²=3/4.
Трапеция АВСД. Боковые стороны АВ и СД пересекаются в точке О, расстояния от О до концов меньшего основания ВС - это ВО и СО.
АВ=2,4, ВС=6, СД=2,6, АД=9
Рассмотрим треугольники AОD и BОC - они подобны по 1 признаку (по 2 углам): ∠О — общий и ∠ DAО=∠CBО (как соответственные углы при BC ∥ AD и секущей AО).
Из подобия треугольников следует пропорциональность соответствующих сторон:
АО/ВО=ДО/СО=АД/ВС=9/6=1,5
АО=АВ+ВО=2,4+ВО
ДО=СД+СО=2,6+СО
ВО=АО/1,5=(2,4+ВО)/1,5
0,5ВО=2,4, ВО=4,8
СО=ДО/1,5=(2,6+СО)/1,5
0,5СО=2,6, СО=5,2
ответ: 4,8 и 5,2