На диагонали ас квадрата авсd взяли точки м и ктак, что угол мвк равен 450. докажите, что из отрезков ам, мк и ск можно сложить треугольник. чему равен наибольший угол этого треугольника
Длина основания - 6см, длины боковых сторон - 14см. Доказательство от противного - строим произвольный равнобедренный треугольник ABC с равными сторонами AB и AC. Из вершины А строим высоту AH, которая будет являться так же медианой и биссектрисой. Отсюда получаем, что треугольник ABH=ACH; BH=CH=1/2BC. Предположим, что длина основания BC=14см, то BH=CH=7см, а AB=AC=6см. Найдём синус угла BAH sin(BAH)=BH/AB=7/6>1 Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.
sin(BAH)=BH/AB=7/6>1
Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.
Рассмотрим ∆ВОА и ∆ВНА.
АВ – общая сторона;
Диагонали ромба пересекаясь образуют 4 прямых угла и точкой пересечения делятся пополам.
Следовательно угол АОВ=90°, тоесть ∆ВОА – прямоугольный с прямым углом ВОА, и АО=АС÷2=28÷2=14.
Угол ВНА=90°, так как ВН – высота;
Угол BAD=60° по условию;
Углы при одной стороне ромба в сумме равны 180°.
Тогда угол АВС=180°–угол BAD=180°–60°=120°
Диагонали ромба являются биссектрисами его углов. Исходя из этого: угол DBA=угол АВС÷2=120°÷2=60°
Получим что ∆ВОА=∆ВНА как прямоугольные треугольники с равными острым углом и катетом.
Тогда АО=ВН как соответственные стороны, следовательно ВН=14.
ответ: 14