На двух противоположных сторонах параллелограмма взяли две точки там, что отмеченные отрезки равны. Докажите, что соединяющий эти точки отрезок делится показанной диагональю параллелограмма пополам
Из вершины равностороннего треугольник АВС восстановлен перпендикуляр АD к плоскости треугольника. Найдите расстояние от точки D до стороны ВС, если АD=1 м, ВС=8м? *** Треугольник равносторонний, следовательно, все углы в нем равны 60º. Искомое расстояние - это отрезок DН, проведенный перпендикулярно ВС. DН - наклонная и ее основание Н по теореме о трех перпендикулярах совпадает с основанием высоты АН треугольника АВС, которая является проекцией наклонной DН. АН можно найти по т.Пифагора или с синуса 60º - результат будет одинаковым: АН=АС*sin 60º=(8*√3):2=4√3 Т.к.АD - перпендикуляр, треугольник АDН - прямоугольный. По т.Пифагора DН=√(AD²+AH²)=7 м или DН=√(DB²-BH²) ВD²=(AB²+AD²)=65 DН=√(65-16)=√49=7м
***
Треугольник равносторонний, следовательно, все углы в нем равны 60º. Искомое расстояние - это отрезок DН, проведенный перпендикулярно ВС.
DН - наклонная и ее основание Н по теореме о трех перпендикулярах совпадает с основанием высоты АН треугольника АВС, которая является проекцией наклонной DН.
АН можно найти по т.Пифагора или с синуса 60º - результат будет одинаковым:
АН=АС*sin 60º=(8*√3):2=4√3
Т.к.АD - перпендикуляр, треугольник АDН - прямоугольный.
По т.Пифагора
DН=√(AD²+AH²)=7 м
или
DН=√(DB²-BH²)
ВD²=(AB²+AD²)=65
DН=√(65-16)=√49=7м
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.