На графике показано движение рабочего от дома до работы и обратно. Определи: а) с какой скоростью шел рабочий до работы и обратно; в) сколько времени находился на работе; 4) сколько времени был в пути.
Углы между плоскостями боковых граней и плоскостью основания - двугранные. Их величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём. Обозначим пирамиду SABCD . Пусть перпендикулярна плоскости АВСD грань ЅАВ ⇒ её высота ЅН перпендикулярна любой прямой в этой плоскости.
Проведём НК║ВС. Т.к. АВСD прямоугольник, НК⊥СD, и наклонная ЅК⊥CD по т.о 3-х перпендикулярах⇒ ∠ЅКН =30°.
В прямоугольном ⊿ ЅНК с острым углом 30° гипотенуза ЅК=2 катета ЅН, который противолежит углу 30° (свойство) ⇒ 2ЅН+ЅН=9, откуда ЅН=3.
В ⊿ ВЅН угол В=60° ⇒ ВЅ=ЅН:sin60°=2√3
В ⊿ ВЅА гипотенуза АB=ЅВ•cos60°=4√3
В ⊿ ЅКН угол ЅКН=30° ⇒ KH=SH•ctg30°=3√3
Формула объёма пирамиды V=S•h:3, где Ѕ - площадь основания пирамиды, h- её высота. АD=KH=3√3
точка пересечения диагоналей параллелограмма - О, точка пересечения диагоналей четырехугольника А₁В₁С₁Д₁ -О₁.
рассмотри четырехугольник АА₁С₁С: АА₁ параллельна СС₁(2 перпендикуляра к одной плоскости параллельны), => АА₁С₁С-трапеция. ОО₁- средняя линия, ОО₁=(1/2)*(АА₁+СС₁)
ОО₁=(1/2)*(6+10), ОО₁=8см
рассмотрим четырехугольник ВВ₁Д₁Д: ВВ₁ параллельна ДД₁, ВВ₁Д₁Д-трапеция, ОО₁ - средняя линия
ОО₁=(1/2)*(ВВ₁+ДД₁), 8=(1/2)*(9+ДД₁), 16=9+ДД₁, ДД₁=7
ответ: ДД₁=7см
Вариант решения.
ответ: 36 ед. объёма
Объяснение:
Углы между плоскостями боковых граней и плоскостью основания - двугранные. Их величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём. Обозначим пирамиду SABCD . Пусть перпендикулярна плоскости АВСD грань ЅАВ ⇒ её высота ЅН перпендикулярна любой прямой в этой плоскости.
Проведём НК║ВС. Т.к. АВСD прямоугольник, НК⊥СD, и наклонная ЅК⊥CD по т.о 3-х перпендикулярах⇒ ∠ЅКН =30°.
В прямоугольном ⊿ ЅНК с острым углом 30° гипотенуза ЅК=2 катета ЅН, который противолежит углу 30° (свойство) ⇒ 2ЅН+ЅН=9, откуда ЅН=3.
В ⊿ ВЅН угол В=60° ⇒ ВЅ=ЅН:sin60°=2√3
В ⊿ ВЅА гипотенуза АB=ЅВ•cos60°=4√3
В ⊿ ЅКН угол ЅКН=30° ⇒ KH=SH•ctg30°=3√3
Формула объёма пирамиды V=S•h:3, где Ѕ - площадь основания пирамиды, h- её высота. АD=KH=3√3
V=AB•AD•SH/3=4√3•3√3•3/3=36 (ед. объёма).