В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Задача: В прямоугольном треугольнике ABC угол С = 90°, CH — высота, проведенная к гипотенузе AB, AC = 6 см, AH = 3 см. Найти HB.
Р-м ΔAHC:
∠AHC = 90° (CH — высота к AB) ⇒ΔAHC — прямоугольный.
Катет равен половине гипотенузы, если он лежит против угла в 30°:
катет AH = 3 см, гипотенуза AC = 6 см ⇒ ∠HCA = 30°.
Тогда ∠HAC (∠A) = 90°−∠HCA = 90°−30° = 60°.
Р-м ΔABC:
∠B = 90°−∠A = 90°−60° = 30°.
катет AC = 6 см, ∠B = 30° ⇒ гипотенуза AB = 2·AC = 2·6 = 12 см.
Тогда отрезок HB = AB−HA = 12−3 = 9 см.
ответ: Длина отрезка HB равна 9 см.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Задача: В прямоугольном треугольнике ABC угол С = 90°, CH — высота, проведенная к гипотенузе AB, AC = 6 см, AH = 3 см. Найти HB.
Р-м ΔAHC:
∠AHC = 90° (CH — высота к AB) ⇒ΔAHC — прямоугольный.
Катет равен половине гипотенузы, если он лежит против угла в 30°:
катет AH = 3 см, гипотенуза AC = 6 см ⇒ ∠HCA = 30°.
Тогда ∠HAC (∠A) = 90°−∠HCA = 90°−30° = 60°.
Р-м ΔABC:
∠B = 90°−∠A = 90°−60° = 30°.
Катет равен половине гипотенузы, если он лежит против угла в 30°:
катет AC = 6 см, ∠B = 30° ⇒ гипотенуза AB = 2·AC = 2·6 = 12 см.
Тогда отрезок HB = AB−HA = 12−3 = 9 см.
ответ: Длина отрезка HB равна 9 см.