Изучением трения ученые занимаются уже пятьсот лет. Первым его исследовал еще Леонардо да Винчи (1452—1519). Важные результаты в этой области были получены французскими учеными Г. Амонтоном (1663—1705) и Ш. Кулоном (1736—1806).
Какую роль играет трение в природе и технике — положительную или отрицательную? На этот вопрос нельзя дать однозначного ответа. Трение может быть как полезным, так и вредным. В первом случае его стараются усилить, во втором — ослабить.
В отсутствие трения покоя ни люди, ни животные не могли бы ходить по земле. В гололедицу, когда трение между подошвой обуви и льдом становится малым и ноги начинают скользить, лед посыпают песком: песок увеличивает трение.
На гладкой поверхности не смогли бы двигаться и автомобили: их колеса, вращаясь, проскальзывали бы и буксовали на месте.
Именно трение останавливает машины при торможении. На льду они даже при включенных тормозах продолжали бы двигаться по инерции.
Но трение может играть и отрицательную роль. Ведь именно из-за него нагреваются и изнашиваются многие движущиеся части различных механизмов. В таких случаях его стараются уменьшить.
Существуют разные уменьшения трения.
1. Введение между трущимися поверхностями смазки (например, какого-либо масла). При наличии смазки соприкасаются не сами поверхности тел, а ее соседние слои. Трение же между слоями жидкости слабее, чем между твердыми поверхностями. Кстати, именно благодаря смазке, возникающей в результате таяния льда под коньком, скольжение на коньках по льду сопровождается очень слабым трением.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Изучением трения ученые занимаются уже пятьсот лет. Первым его исследовал еще Леонардо да Винчи (1452—1519). Важные результаты в этой области были получены французскими учеными Г. Амонтоном (1663—1705) и Ш. Кулоном (1736—1806).
Какую роль играет трение в природе и технике — положительную или отрицательную? На этот вопрос нельзя дать однозначного ответа. Трение может быть как полезным, так и вредным. В первом случае его стараются усилить, во втором — ослабить.
В отсутствие трения покоя ни люди, ни животные не могли бы ходить по земле. В гололедицу, когда трение между подошвой обуви и льдом становится малым и ноги начинают скользить, лед посыпают песком: песок увеличивает трение.
На гладкой поверхности не смогли бы двигаться и автомобили: их колеса, вращаясь, проскальзывали бы и буксовали на месте.
Именно трение останавливает машины при торможении. На льду они даже при включенных тормозах продолжали бы двигаться по инерции.
Но трение может играть и отрицательную роль. Ведь именно из-за него нагреваются и изнашиваются многие движущиеся части различных механизмов. В таких случаях его стараются уменьшить.
Существуют разные уменьшения трения.
1. Введение между трущимися поверхностями смазки (например, какого-либо масла). При наличии смазки соприкасаются не сами поверхности тел, а ее соседние слои. Трение же между слоями жидкости слабее, чем между твердыми поверхностями. Кстати, именно благодаря смазке, возникающей в результате таяния льда под коньком, скольжение на коньках по льду сопровождается очень слабым трением.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²