1 Рассмотрим треугольник AOC и треугольник BOD: Угол AOC = BOD (как вертикальные) AO=OB и CO=OD (по условию,т.к. точка является O - посередине) значит, треугольник AOC = равен треугольнику BOD (по двум сторонам и углу между ними) значит угол DAO = равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
2 Рассмотрим треугольник ABD и треугольник ADC: по условию, угол BDA = углу ADC сторона AD - общая и по условию угол BAD = углу DAC (т.к. AD - биссектриса) Значит, треугольник ABD = треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
Рассмотрим треугольник AOC и треугольник BOD:
Угол AOC = BOD (как вертикальные)
AO=OB и CO=OD (по условию,т.к. точка является O - посередине)
значит, треугольник AOC = равен треугольнику BOD (по двум сторонам и углу между ними)
значит угол DAO = равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
2
Рассмотрим треугольник ABD и треугольник ADC:
по условию, угол BDA = углу ADC
сторона AD - общая и по условию угол BAD = углу DAC (т.к. AD - биссектриса)
Значит, треугольник ABD = треугольнику ADC(по двум углам и стороне между ними)
значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²