В основании пирамиды SABCD, все боковые ребра которой равны √74 см, лежит прямоугольник со сторонами AB=8 см и BC=6 см. Найдите площадь сечения MSN, если оно перпендикулярно плоскости основании, а BM:MC=2:1 Чтобы ответить на вопрос задачи, необходимо знать высоту и основание сечения. т.е. SO и MN треугольника SMN. В основании пирамиды прямоугольник. Вокруг любого прямоугольника можно описать окружность. Все четыре половины диагоналей являются радиусами описанной окружности и проекциями равных ребер пирамиды. По т. Пифагора АО=0,5 √(СВ²+АВ²)=5 см SO=√(74-25)=7 cм Высота сечения найдена. MN делит основание АВСD на две равные прямоугольные трапеции ( наверняка разберитесь, почему равные-см. рисунок основания пирамиды) ВМ:СМ=2:1, ⇒ ВМ=4см, СМ=2см Из прямоугольного треугольника МNH, где NH - перпендикуляр к СВ, найдем гипотенузу NM: NН=AB=8см NM=√(МН²+NH²)=√(64+4)=2√17см Sсечения=SO*MN:2=0,5*7*2√17=7√17см²
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Чтобы ответить на вопрос задачи, необходимо знать высоту и основание сечения. т.е. SO и MN треугольника SMN.
В основании пирамиды прямоугольник.
Вокруг любого прямоугольника можно описать окружность.
Все четыре половины диагоналей являются радиусами описанной окружности и проекциями равных ребер пирамиды.
По т. Пифагора
АО=0,5 √(СВ²+АВ²)=5 см
SO=√(74-25)=7 cм
Высота сечения найдена.
MN делит основание АВСD на две равные прямоугольные трапеции ( наверняка разберитесь, почему равные-см. рисунок основания пирамиды)
ВМ:СМ=2:1, ⇒
ВМ=4см, СМ=2см
Из прямоугольного треугольника МNH, где NH - перпендикуляр к СВ, найдем гипотенузу NM:
NН=AB=8см
NM=√(МН²+NH²)=√(64+4)=2√17см
Sсечения=SO*MN:2=0,5*7*2√17=7√17см²
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.