В основании пирамиды SABCD, все боковые ребра которой равны √74 см, лежит прямоугольник со сторонами AB=8 см и BC=6 см. Найдите площадь сечения MSN, если оно перпендикулярно плоскости основании, а BM:MC=2:1 Чтобы ответить на вопрос задачи, необходимо знать высоту и основание сечения. т.е. SO и MN треугольника SMN. В основании пирамиды прямоугольник. Вокруг любого прямоугольника можно описать окружность. Все четыре половины диагоналей являются радиусами описанной окружности и проекциями равных ребер пирамиды. По т. Пифагора АО=0,5 √(СВ²+АВ²)=5 см SO=√(74-25)=7 cм Высота сечения найдена. MN делит основание АВСD на две равные прямоугольные трапеции ( наверняка разберитесь, почему равные-см. рисунок основания пирамиды) ВМ:СМ=2:1, ⇒ ВМ=4см, СМ=2см Из прямоугольного треугольника МNH, где NH - перпендикуляр к СВ, найдем гипотенузу NM: NН=AB=8см NM=√(МН²+NH²)=√(64+4)=2√17см Sсечения=SO*MN:2=0,5*7*2√17=7√17см²
Боковые стороны прямоугольной трапеции равны 15 см и 17 см, средняя линия равна 6 см. Найдите основания трапеции
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой угол А=90*, следовательно АД - высота сделаем дополнительное построение треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1 С1О=В1О = 15/2=7,5 СО=ВО=17/2=8,5 по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4 средняя линия равна (а+в) /2 а=6-4=2 в=6+4=10 ответ: основания трапеции равны 2 и 10
Чтобы ответить на вопрос задачи, необходимо знать высоту и основание сечения. т.е. SO и MN треугольника SMN.
В основании пирамиды прямоугольник.
Вокруг любого прямоугольника можно описать окружность.
Все четыре половины диагоналей являются радиусами описанной окружности и проекциями равных ребер пирамиды.
По т. Пифагора
АО=0,5 √(СВ²+АВ²)=5 см
SO=√(74-25)=7 cм
Высота сечения найдена.
MN делит основание АВСD на две равные прямоугольные трапеции ( наверняка разберитесь, почему равные-см. рисунок основания пирамиды)
ВМ:СМ=2:1, ⇒
ВМ=4см, СМ=2см
Из прямоугольного треугольника МNH, где NH - перпендикуляр к СВ, найдем гипотенузу NM:
NН=AB=8см
NM=√(МН²+NH²)=√(64+4)=2√17см
Sсечения=SO*MN:2=0,5*7*2√17=7√17см²
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой
угол А=90*, следовательно АД - высота
сделаем дополнительное построение
треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1
С1О=В1О = 15/2=7,5
СО=ВО=17/2=8,5
по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4
средняя линия равна (а+в) /2
а=6-4=2
в=6+4=10
ответ: основания трапеции равны 2 и 10