Две хорды пересекаются. Длина одной хорды равна 7 см, вторая хорда точкой пересечения делится на отрезки 6 см и 2 см. На какие части делится первая хорда?
Введи длину меньшей части (целое число): см.
Введи длину большей части (целое число): — см.
Задание 3
∢ OKL = 30°.
Отрезок касательной
LK = 7,23–√ дм.
Найди длину окружности
C= ‐‐‐ π дм.
(Если необходимо, ответ округли до сотых.)
Задание 4
Вычисли площадь закрашенного сектора,
если радиус круга равен 4 см и центральный угол EOF= 18°.
ответ: Sсектора = π см2.
1СТА УМОЛЯЮ МНЕ У МЕНЯ ТОЛЬКО УМОЛЯЮ УМОЛЯЮ ГОСПОДА ОЧЕНЬ УМОЛЯЮ
1. площа прям. трик.= 1/2 катет*катет.(один катет=12 за умовою, другий - невідомий). 2. З вершини прямого кута опустимо пкрпендикуляр на гіпотенузу. за теоремою Піфагора знайдемо довжину перпендикуляра як невідомого катета: під коренем 144-64= під кор. 80= під кор. 16*5=4*корінь з пяти. 3. у 8 класі вчили, що квадрат цього перпендикуляра, що ми провели = добутку двох проекцій, одна 8 за умовою задачі, а другу позначимо х. тому 8х=(4*корінь з пяти) у квадраті 8х=80 х=10 - це друга проекція. отже, вся гіпотенуза=10+8=18. 4. за т.Піфагора знайдем невідомий другий катет. під коренем 18 у квадраті-12 у квадраті=6*корінь з пяти. 5. площа=1/2 *12*6корінь5=36*корінь з пяти.
2. 5 см.
3. 8 см, 18 см.
4. 7 см.
Объяснение:
"2. Периметр трапеции равен 22см, но и боковые стороны - 4см и 8см. Найти среднюю линию трапеции.
3. Одна из основ трапеции на 10см меньше за вторую, а ее средняя линия равен 13см. Найдите основы трапеции,
4. Диагональ равнобедренной трапеции является биссектрисой острого угла. Найти боковую сторону трапеции, если основы равны 7см и 15см."
***
2. Р ABCD=AB+BC+CD+AD=22 см.
4+BC+8+AD=22;
BC+AD=22-12=10;
MN=(BC+AD)/2 =10/2=5 см.
***
3. Пусть одно из оснований трапеции равно BC= х см. Тогда второе основание равно AD= х-10 см.
Средняя линия трапеции MN=(BC+AD)/2=13;
(x+x-10)/2=13;
2x-10=26;
2x=36;
ВС=x=18 большее основание;
AD=x-10=18-10=8 см - меньшее основание.
***
4. ∠BAC=CAD=∠BCA, как накрест лежащие при параллельных прямых BC и AD и секущей АС. Следовательно Δ АВС равнобедренный и стороны АВ=CD=ВС=7 см.
2. З вершини прямого кута опустимо пкрпендикуляр на гіпотенузу. за теоремою Піфагора знайдемо довжину перпендикуляра як невідомого катета: під коренем 144-64= під кор. 80= під кор. 16*5=4*корінь з пяти.
3. у 8 класі вчили, що квадрат цього перпендикуляра, що ми провели = добутку двох проекцій, одна 8 за умовою задачі, а другу позначимо х. тому 8х=(4*корінь з пяти) у квадраті
8х=80
х=10 - це друга проекція. отже, вся гіпотенуза=10+8=18.
4. за т.Піфагора знайдем невідомий другий катет. під коренем 18 у квадраті-12 у квадраті=6*корінь з пяти.
5. площа=1/2 *12*6корінь5=36*корінь з пяти.