На катетах ас и вс и гипотенузе ав прямоугольного треугольника авс как на сторонах построены квадраты(вне треугольника) смра, befc , adkb. найдите площадь шестиугольника dkefmp, если ав=с и площадь авс равна s
Это очень красивая и симетричная задача площадь 6 угольника равна сумме площадей квадратов ,площади прямоугольного треугольникаб и еще площадей 3 треугольников cme fbk pad причем cmf-прямоугольный начнем с простого по теореме пифагора сумма площадей на катетах равна площади квадрата на гипотенузе по теореме пифагора. то есть сумма площадей квадратов равна 2*c^2ю площадь треугольник сme прямоугольный тк его угол c равен разности полного угла 360 и 3 прямых углов 360-3*90=90 тк его катеты равны катетам треугольника abc то его площадь тоже равна s остались 2 самых сложных треугольника но в них как не удивительно все тоже красиво получается обозначим острые углы треугольника abc как a и b тогда углы этих треуголиников A и B равны 360-90*2-a=180-a 360-90*2-b=180-b тогда площади этих треугольников можно выразить через стороны и синус угла между ними то есть учтя что sin(180-q)=sinq то получим s1=a*c*sina s2=b*c*sinb c другой стлороны по тем же формулам можно найти и площадь треугольника abc через синусы острых углов то есть s1=s2=S тогда площадь 6 угольника равна So=4*s+2*c^2