На каждой стороне квадрата взяли по одной точке. При этом оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата.
Найдите периметр прямоугольника, если диагональ квадрата равна 6.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответсвенно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.
AC = A1C1, по условию.
Так как ∠B = ∠B1, по условию => ∠А = ∠А1, так как сумма острых углов прямоугольного треугольника равна 90°.
=> △ABC = △A1B1C1 (по катету и прилежащему к нему острому углу)
Дано:
△ABC и △A1B1C1 - прямоугольные.
AC = A1C1
∠B = ∠B1.
Доказать: △ABC = △A1B1C1.
Решение.
Теорема.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответсвенно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.
AC = A1C1, по условию.
Так как ∠B = ∠B1, по условию => ∠А = ∠А1, так как сумма острых углов прямоугольного треугольника равна 90°.
=> △ABC = △A1B1C1 (по катету и прилежащему к нему острому углу)
Ч.Т.Д.
4)36
Объяснение:
4) Пусть H и P - точки касания сторон ML и MK
Тогда по свойству отрезков касательных, проведенных к окружности из одной точки, LT = LH, KT = KP, MH = MP
ML + LK = MH + HL + LT + KT
MK = MP + PK = MH + KT ( KT = KP, MH = MP )
Если провести радиус OH, то OH⊥ML, также OT⊥ LK
∠MLK = 90°, ∠LHO = 90°, ∠OTL = 90°, поэтому LHOT - прямоугольник
Поскольку OT = OH (радиусы), то LHOT - квадрат, и HL = LT = OT = 3
Значит, MK = MH + KT = ML + LK - HL - LT = 21 - 3 - 3 = 15
P(ΔMLK) = ML + LK + MK = 21 + 15 = 36
3) BN = BK, AM = AK, CN = CM(свойство отрезков касательных)
Обозначим CN = CM = х
По теореме Пифагора AC^2 + BC^2 = AB^2
AC = CM + AM = CM + AK = x + 18
BC = CN + BN = CN + BK = x + 12
AB = BK + AK = 12 + 18 = 30
(x + 18)^2 + (x + 12)^2 = 30^2
x^2 + 36x + 324 + x^2 + 24x + 144 = 900
2x^2 + 60x - 432 = 0
x^2 + 30x - 216 = 0
(x + 36)(x - 6) = 0
x = 6 (x = - 36 <0 - не подходит)
AC = x + 18 = 6 + 18 = 24
BC = x + 12 = 6 + 12 = 18
P(ΔABC) = AB + BC + AC = 30 + 18 + 24 = 72
2) A, B, C - точки касания сторон KR, LR, KL
OA⊥KR, OB⊥LR(касательная ⊥ радиусу), ∠KRL прямой, поэтому RAOB - прямоугольник
OA = OB (радиусы), тогда RAOB - квадрат и RA = RB = AO = 8
AK = AC, RA = RB, LB = LC(отрезки касательных, проведенных к окружности из одной точки)
RK = RA + AK
RL = RB + BL
P(ΔRKL) = RK + RL + KL = RA + AK + RB + BL + KL = AR + RB + KL + CK + LC = AR + BR + KL + KL = AR + BR + 2KL = 8 + 8 + 2*35 = 86