В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Neznayka66
Neznayka66
30.12.2020 06:08 •  Геометрия

На клетчатой бумаге нарисован квадрат 20 x 20, все стороны (их длины равны 20) которого идут по линиям сетки. какое наименьшее число прямых, не параллельных линиям сетки, нужно провести, чтобы вычеркнуть все узлы, находящиеся на границе или внутри квадрата?

Показать ответ
Ответ:
Tiggeri
Tiggeri
18.09.2022 12:04

Данная пирамида не существует.

Объяснение:

Дано условие: Каждое боковое ребро пирамиды должно образовывать с плоскостью основания угол 60°. Такое условие возможно только при условии, что в основании лежит правильный многоугольник - многоугольник, у которого равны все стороны и все углы. Поскольку равнобокая трапеция не является правильным многоугольником, можно сказать, что данная пирамида невозможна. Однако, если представить, что лишь 2 боковых ребрa образуют с плоскостью основания угол 60°, то задача станет вполне решаемой.

Итак, представим пирамиду NABCD, где NO - h - , ∠NDC=∠NCD=60°, ∠ADB=90°, ∠BAD=90°. Из ΔАВD по частному случаю прямоугольных треугольников (30°, 60°, 90°):

AD=9, AB=18, BD=9√3; => DC = 18 - 4,5 - 4,5 = 9

Так как, по условию, ΔNDC - равносторонний, стороны ND= DC= NC= 9.

Исходя из теоремы о трёх перпендикулярах, получаем, что ∠ADC = ∠NCB = 90° (∠ADB= ∠ACB= 90°, ∠NOD= ∠NOC= 90°.

Из прямоугольных равнобедренных треугольников ΔNAD & ΔNBC, по частному случаю прямоугольных треугольников (45°, 45°, 90°):

NB = AN = 9√2

ответ: Боковые рёбра пирамиды, в основании которой лежит равнобокая трапеция, при условии, что ЛИШЬ 2 БОКОВЫХ РЕБРА ND и DC образуют с плоскостью основания угол 60°:

NA= NB = 9√2, ND= DC = 9.


Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 6
Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 6
0,0(0 оценок)
Ответ:
polarusam
polarusam
09.05.2022 21:42

30 и 30, 18 и 42

Объяснение:

Возьмём произвольный треугольник АВС. Углы ВАD и ВСК внешние, угол ВАD=углу ВСК по условию. Угол ВАС=180°-угол ВАD (смежные) и угол ВСА=180°-угол ВСК (смежные). Угол ВАD=углу ВСК=> угол ВАС =180°-угол ВАD=180°-угол ВСК= углу ВСА. Угол ВАС = углу ВСА=> треугольник АВС - равнобедренный и по свойству АВ=ВС.

1. Пусть АВ=ВС=х, тогда Р=АВ+ВС+АС= х+х+18 =2х+18=78, 2х=78-18=60, х=30=> АВ=ВС=30.

ответ: 30 и 30

2. Пусть АВ=18, тогда АВ=ВС=18. Р=АВ+ВС+АС=18+18+АС=36+АС=78, АС = 78-36=42.

ответ: 18 и 42.

Р.с. получилось 2 пункта, т.к. в условии не сказано какая из сторон равна 18, поэтому мы рассматриваем 2 варианта, когда АС=18 и когда АВ=ВС=18.


Два внешних угла треугольника при разных вершинах равны. Периметр треугольника равен 78 см, а одна и
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота