красным цветом обозначено боковое ребро призмы и равно оно 14 см
зеленым цветом обозначена высота проведенная из точки А в точку Н и состовляющая угол с плоскостью основания 90 градусов.
получается прямоугольный треугольник АА1Н с гипотенузой АА1. одна из теорем прямоугоьного треугольника гласит: катет лежащий против угла в 30 градусов равен половине гипотенузы. в нашем случае таким катетом является искомая высота АН и она равна 14/2=7см
Гульсарочка как то вокруг решения ходит :) Диагонали у параллелограмма не равны, только у прямоугольника.
Вот как можно поступить. Берется прямоугольный треугольник со стронами 5,12,13. На катете 12 от вершины прямого угла откладывается отрезок, равный малому катету, то есть 5, и соединяется с противоположной вершиной треугольника. Получился треугольник со сторонами 12 - 5 = 7, 13 и 5*корень(2).
Вот на такие два треугольника и делит заданный параллелограмм диагональ длинны 13. Можно легко достроить его, проведя 2 линии, параллельные сторонам этого треугольника, через противоположные вершины.
Площадь такого параллелограмма равна 5*7 = 35.
Вот какая штука. В моем решении (и - между прочим, в решении Гульсарочки!) вторая сторона параллелограмма получается 5*корень(2), что больше 7 (совсем немного, но - больше). Поэтому вторая высота (проведенная к этой стороне) - меньше 5 (произведение высоты на сторону равно площади). Поэтому мое решение не соответствует условию, в котором сказано, что 13 - наибольшая из диагоналей, а 5 - наименьшая из высот.
В решении же Гульсарочки, которое получается, если от вершины прямого угла откладывается отрезок, равный 5, вдоль продолжения катета 12, то есть длина стороны параллелограмма равна 12 + 5 =17. Это решение ничем не хуже и не лучше моего, поскольку тоже не удовлетворяет всему условию :) - в этом случае диагональ 13 не наибольшая.
обозначим призму АВСDА1В1С1D1
красным цветом обозначено боковое ребро призмы и равно оно 14 см
зеленым цветом обозначена высота проведенная из точки А в точку Н и состовляющая угол с плоскостью основания 90 градусов.
получается прямоугольный треугольник АА1Н с гипотенузой АА1. одна из теорем прямоугоьного треугольника гласит: катет лежащий против угла в 30 градусов равен половине гипотенузы. в нашем случае таким катетом является искомая высота АН и она равна 14/2=7см
P.S. я не художник((( простите((
Гульсарочка как то вокруг решения ходит :) Диагонали у параллелограмма не равны, только у прямоугольника.
Вот как можно поступить. Берется прямоугольный треугольник со стронами 5,12,13. На катете 12 от вершины прямого угла откладывается отрезок, равный малому катету, то есть 5, и соединяется с противоположной вершиной треугольника. Получился треугольник со сторонами 12 - 5 = 7, 13 и 5*корень(2).
Вот на такие два треугольника и делит заданный параллелограмм диагональ длинны 13. Можно легко достроить его, проведя 2 линии, параллельные сторонам этого треугольника, через противоположные вершины.
Площадь такого параллелограмма равна 5*7 = 35.
Вот какая штука. В моем решении (и - между прочим, в решении Гульсарочки!) вторая сторона параллелограмма получается 5*корень(2), что больше 7 (совсем немного, но - больше). Поэтому вторая высота (проведенная к этой стороне) - меньше 5 (произведение высоты на сторону равно площади). Поэтому мое решение не соответствует условию, в котором сказано, что 13 - наибольшая из диагоналей, а 5 - наименьшая из высот.
В решении же Гульсарочки, которое получается, если от вершины прямого угла откладывается отрезок, равный 5, вдоль продолжения катета 12, то есть длина стороны параллелограмма равна 12 + 5 =17. Это решение ничем не хуже и не лучше моего, поскольку тоже не удовлетворяет всему условию :) - в этом случае диагональ 13 не наибольшая.