Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Через прямую ВВ₁ и ВС можно провести единственную плоскость. Так как точка D лежит на ВС, она лежит в этой плоскости. DD₁║BB₁ и CC₁║BB₁ значит DD₁ и СС₁ так же лежат в этой плоскости. Эта плоскость пересекает плоскость α по прямой В₁С₁, значит и точка D₁ лежит на линии пересечения плоскостей. Итак, В₁ВСС₁ - плоский четырехугольник, у которого две стороны параллельны, т.е. трапеция. DD₁ параллелен основаниям трапеции и проходит через середину боковой стороны, значит является средней линией. DD₁ = (СС₁ + ВВ₁)/2 = (12 + 2)/2 = 7 см
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Так как точка D лежит на ВС, она лежит в этой плоскости.
DD₁║BB₁ и CC₁║BB₁ значит DD₁ и СС₁ так же лежат в этой плоскости.
Эта плоскость пересекает плоскость α по прямой В₁С₁, значит и точка D₁ лежит на линии пересечения плоскостей.
Итак, В₁ВСС₁ - плоский четырехугольник, у которого две стороны параллельны, т.е. трапеция.
DD₁ параллелен основаниям трапеции и проходит через середину боковой стороны, значит является средней линией.
DD₁ = (СС₁ + ВВ₁)/2 = (12 + 2)/2 = 7 см