Если забыты формулы, решить задачи можно с теоремы синусов. Для радиуса описанной окружности. Разделим пятиугольник на пять равных равнобедренных треугольников, соединив центр окружности с вершинами фигуры. Боковыми сторонами треугольника будут радиусы описанной окружности. Уго при вершине такого треугольника (при центре окружности) равен 360° :5=72° Угол при основании ( стороне пятиугольника) равен ( 180°-72°):2=54°, и этому углу противолежит радиус описанной окружности. По теореме синусов 3:(sin 72°) равно отношению боковой стороны к синусу 54°. Но боковая сторона здесь радиус. Следовательно, 3:(sin 72°)=R:(sin 54°) 3:0,951=R:0,8090 R*0,951=3*0,8090 R=3*0,8090:0,951= ≈2,55 см
Для радиуса вписанной окружности. Разделим пятиугольник на пять равных равнобедренных треугольников. Проведем из центра окружности к стороне пятиугольника ( основанию треугольника) высоту, которая в равнобедренном треугольнике и медиана, и биссектриса и радиус вписанной окружности прятиугольника. Внутренний ( для окружности - центральный) угол такого треугольника равен 360°:5=72° Высота ( биссектриса) делит его на углы по 36°, а равнобедренный треугольник - на два прямоугольных треугольника с меньшим катетом, равным половине стороны пятиугольника и противолежащим углу 36°. Тогда tg (36°)=(3:2):r r=1,5:0,7265= ≈2,06 см
СМ : МК : КА = 2 : 3 : 2, т.е. СМ - две одинаковые части, МК - три такие же части, а КА - 2 части. Тогда
СМ : СК : СА = 2 : 5 : 7
Если прямая параллельна стороне треугольника, то она отсекает треугольник, подобный данному, значит
ΔМСТ подобен ΔАСВ и коэффициент подобия равен:
k₁ = CM : CA = 2 : 7
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Smct : Sabc = 4 : 49
Smct = 4 · 98 / 49 = 8 см²
ΔКСР подобен ΔАСВ,
k₂ = CK : CA = 5 : 7
Skcp : Sacb = 25 : 49
Skcp = 25 · 98 / 49 = 50 см²
Skmtp = Skcp - Smct = 50 - 8 = 42 см²
Sakpb = Sacb - Skcp = 98 - 50 = 48 см²
Для радиуса описанной окружности.
Разделим пятиугольник на пять равных равнобедренных треугольников, соединив центр окружности с вершинами фигуры.
Боковыми сторонами треугольника будут радиусы описанной окружности. Уго при вершине такого треугольника (при центре окружности) равен
360° :5=72°
Угол при основании ( стороне пятиугольника) равен (
180°-72°):2=54°, и этому углу противолежит радиус описанной окружности.
По теореме синусов 3:(sin 72°) равно отношению боковой стороны к синусу 54°.
Но боковая сторона здесь радиус.
Следовательно,
3:(sin 72°)=R:(sin 54°)
3:0,951=R:0,8090
R*0,951=3*0,8090
R=3*0,8090:0,951= ≈2,55 см
Для радиуса вписанной окружности.
Разделим пятиугольник на пять равных равнобедренных треугольников.
Проведем из центра окружности к стороне пятиугольника ( основанию треугольника) высоту, которая в равнобедренном треугольнике и медиана, и биссектриса и радиус вписанной окружности прятиугольника. Внутренний ( для окружности - центральный) угол такого треугольника равен 360°:5=72°
Высота ( биссектриса) делит его на углы по 36°, а равнобедренный треугольник - на два прямоугольных треугольника с меньшим катетом, равным половине стороны пятиугольника и противолежащим углу 36°. Тогда tg (36°)=(3:2):r
r=1,5:0,7265= ≈2,06 см