На координатной плоскости нарисуй точку M(−3;−8), точку F(0;−7) и точку A(2;−1). 1. Если нарисовать отрезок AB параллельно отрезку MF, какие будут координаты точки B?
(Отрезки равны, точку В расположи выше точки А.)
B( ; ).
2. Запиши, как из координат точки A вычислить координаты точки B, не используя рисунок!
Если координата x точки A равна 2, то координата x точки B равна 2+
.
Если координата y точки A равна −1, то координата y точки B равна −1+
.
В прямоугольнике ABCD диагонали пересекаются в точке О. Угол COD равен 32°. Найдите углы ODA, OAB, BOC, BOA.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Дано :
Четырёхугольник ABCD - прямоугольник.
АС∩BD = O.
∠COD = 32°.
Найти :
∠ODA = ?
∠ОАВ = ?
∠ВОС = ?
∠ВОА = ?
∠ВОА = ∠COD = 32° (так как вертикальные).
∠ВОС + ∠COD = 180° (так как смежные) ⇒ ∠ВОС = 180° - ∠COD = 180° - 32° = 148°.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Следовательно, АО = ВО = СО = DO.
Рассмотрим ΔCOD - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠COD + ∠OCD + ∠ODC = 180° ⇒ ∠OCD + ∠ODC = 180° - ∠COD = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ODC = ∠OCD = 148° : 2 = 74°.
Тогда ∠ODA + ∠ODC = 90° ⇒ ∠ODA = 90° - ∠ODC = 90° - 74° = 16°.
Рассмотрим ΔВОА - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠ВОА + ∠ОАВ + ∠ОВА = 180° ⇒ ∠ОАВ + ∠ОВА = 180° - ∠ВОА = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ОАВ = ∠ОВА = 148° : 2 = 74°.
∠ODA = 16°, ∠ОАВ = 74°, ∠ВОС = 148°, ∠ВОА = 32°.
∠МВС = 20°.
∠ВСМ = 70°.
Объяснение:
В треугольнике АВС отрезок ВМ является и высотой (∠ВМА = 90° - дано) и медианой (точка М - середиеа стороны АС - дано). Следовательно, треугольник АВС равнобедренный с основанием АС и отрезок ВМ является биссектрисой (свойство). Тогда
∠МВС = ∠АВС:2 = 40:2 = 20°.
∠ВСМ = ∠ ВАМ = 70° (углы при основании равнобедренного треугольника).
Или так:
∠ВМА=∠ВМС=90° как смежные, равные в сумме 180°.
Прямоугольные треугольники АВМ и СВМ равны по двум катетам: ВМ - общий, а АМ = СМ (так как точка М - середина стороны АС - дано) Из равенства треугольников имеем равенство углов, лежащих против равных сторон:
∠МВС = ∠МВА = ∠АВС:2 = 40:2 = 20°. (∠АВС = ∠МВС + ∠МВА)
∠ВСМ = ∠ ВАМ = 70°.