Объяснение: Из аксиом планиметрии: Через любые две точки можно провести прямую и притом только одну.
Через две данные точки – ( А и В )– проходит единственная прямая (а ) (см. рисунок).
Из аксиом стереометрии: Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
Через точки (А и В) лежащие на прямой ( а ), и через каждую точку ( b, c, d…..n ), не лежащую на этой прямой, проходит одна плоскость ( b, c, d…..n ). В пространстве точек, не лежащих на данной прямой. бесчисленное множество, следовательно, через две точки можно провести прямую и провести бесчисленное множество плоскостей.
Для наглядности можно представить себе сферу и плоскости сечения, проходящие через её диаметр и каждую точку на её поверхности.
Сколько плоскостей можно провести через 2 точки?
ответ: бесчисленное множество.
Объяснение: Из аксиом планиметрии: Через любые две точки можно провести прямую и притом только одну.
Через две данные точки – ( А и В )– проходит единственная прямая (а ) (см. рисунок).
Из аксиом стереометрии: Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
Через точки (А и В) лежащие на прямой ( а ), и через каждую точку ( b, c, d…..n ), не лежащую на этой прямой, проходит одна плоскость ( b, c, d…..n ). В пространстве точек, не лежащих на данной прямой. бесчисленное множество, следовательно, через две точки можно провести прямую и провести бесчисленное множество плоскостей.
Для наглядности можно представить себе сферу и плоскости сечения, проходящие через её диаметр и каждую точку на её поверхности.
.
Обозначим АВ=с, ВС=а.
Возведём в квадрат:
Отсюда а*с=36+12=48 (1).
Биссектриса делит сторону АС пропорционально боковым сторонам.
3/с = 4/а
или с = (3/4)*а.
Подставим в уравнение (1):
а*((3/4)*а) = 48
а² =(48*4) / 3 = 64
а = √64 = 8.
с = (3*8) / 4 =6.
Находим радиус окружности, вписанной в треугольник АВС:
Аналогично находим радиус окружности, вписанной в треугольник
ДВС: r₁=1,290994.
Разность r - r₁ = 0,645498.
По теореме косинусов находим величину угла С:
.
С = 0.812756 радиан = 46.56746°.
Центры окружностей с радиусами r и r₁ лежат на биссектрисе угла С.
Тангенс угла С/2 = tg(46.56746 / 2) = tg 23.28373° = 0,43033.
Тогда длина отрезка КМ равна:
КМ = (r-r₁) / tg(C/2) = 0,645498 / 0,43033 = 1,5.